
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Schema-Aware Hyper-Relational Knowledge
Graph Embeddings for Link Prediction

Yuhuan Lu, Dingqi Yang*, Pengyang Wang, Paolo Rosso, and Philippe Cudre-Mauroux

Abstract—Knowledge Graph (KG) embeddings have become a powerful paradigm to resolve link prediction tasks for KG completion.
The widely adopted triple-based representation, where each triplet (h, r, t) links two entities h and t through a relation r, oversimplifies
the complex nature of the data stored in a KG, in particular for hyper-relational facts, where each fact contains not only a base triplet
(h, r, t), but also the associated key-value pairs (k, v). Even though a few recent techniques tried to learn from such data by
transforming a hyper-relational fact into an n-ary representation (i.e., a set of key-value pairs only without triplets), they result in
suboptimal models as they are unaware of the triplet structure, which serves as the fundamental data structure in modern KGs and
preserves the essential information for link prediction. Moreover, as the KG schema information has been shown to be useful for
resolving link prediction tasks, it is thus essential to incorporate the corresponding hyper-relational schema in KG embeddings. Against
this background, we propose sHINGE, a schema-aware hyper-relational KG embedding model, which learns from hyper-relational facts
directly (without the transformation to the n-ary representation) and their corresponding hyper-relational schema in a KG. Our extensive
evaluation shows the superiority of sHINGE on various link prediction tasks over KGs. In particular, compared to a sizeable collection
of 21 baselines, sHINGE consistently outperforms the best-performing triple-based KG embedding method, hyper-relational KG
embedding method, and schema-aware KG embedding method by 19.1%, 1.8%, and 12.9%, respectively.

Index Terms—Knowledge graph embedding, Hyper-relation, Schema, Link prediction

✦

1 INTRODUCTION

KNOWLEDGE Graphs (KGs) leverage a graph-structured
data model to integrate interrelated entities via rela-

tions that encode the underlying semantics between the
entities, representing real-world facts. Using the widely
adopted triple-based representation, a fact is represented as
a triplet head, relation, tail, or (h, r, t) for short, encodes a
relation connecting a head entity and a tail entity, such as
Switzerland (head) hasCurrency (relation) Swiss franc (tail).
Modern KGs such as Freebase [1], Google’s Knowledge
Graph [2] or Wikidata [3], contains a large amount of high-
quality facts empowering a large range of Web applications
including semantic search [4], question-answering [5], query
expansion [6], or recommendation systems [7]. However,
these KGs are also known to suffer from an incompleteness
issue, i.e., missing facts. For example, 71% of all people
from Freebase have no place of birth [8], even though this
is a mandatory property of the schema [9]. Against this
background, Knowledge Graph completion problems have
been widely studied. A key problem in this context is to
predict the missing links in a KG (a.k.a. link prediction).
Given two elements of a triplet, the task is to predict the
missing one, such as (?, r, t), (h, ?, t) or (h, r, ?), where the
question mark represents the missing entity/relation.

• Yuhuan Lu, Dingqi Yang, and Pengyang Wang are with the State Key
Laboratory of Internet of Things for Smart City and Department of
Computer and Information Science, University of Macau, Macao SAR,
China, E-mail: lu.yuhuan@connect.umac.mo, dingqiyang@um.edu.mo,
pywang@um.edu.mo. Paolo Rosso and Philippe Cudre-Mauroux are with
the University of Fribourg, Switzerland, E-mail: paolo@exascale.info,
philippe.cudre-mauroux@unifr.ch.

• *Corresponding author: Dingqi Yang (email: dingqiyang@um.edu.mo)

Manuscript received April 19, 2005; revised August 26, 2015.

To resolve such link prediction tasks over KGs, Knowl-
edge Graph embeddings have been shown as a powerful
tool in the current literature [10]. The key idea of KG
embeddings is to learn a latent (and low-dimensional) vec-
tor representation of entities/relations (i.e., entity/relation
embeddings) from a set of triplets in a KG, while preserving
the essential information for link prediction in the KG. For
example, TransE [11], a typical KG embedding technique,
models a relation as a vector-plus operation between two
entities h+r ≈ t; subsequently, when predicting the missing
links, a new fact can be asserted by evaluating ||h+ r − t||.

Despite its wide adoption, the triple-based representation
of a KG often oversimplifies the complex nature of the
data stored in the KG, in particular for hyper-relational
data (a.k.a. multi-fold [12] or n-ary [13] relational data),
where each fact contains multiple relations and entities.
Figure 1a shows an example about Marie Curie’s education
from Wikidata: it contains a base triplet: (h, r, t) {Marie
Curie, educated at, University of Paris}, as well as further
information associated with the triplet, represented as key-
value (relation-entity) pairs1 (k, v) including {academic ma-
jor, physics}, {academic degree, Master of Science}, etc. Such
hyper-relational data is ubiquitous in KGs. For example,
more than 30% entities in Freebase are involved in such
hyper-relational facts [12]. When learning KG embeddings,
traditional methods transform those hyper-relational facts
into triplets by either 1) keeping the base triplet only from
a hyper-relational fact [14]; 2) creating additional triplets
from a hyper-relational fact via reification [15]; or 3) creating

1. We use the term key-value (k, v) denoting a relation-entity pair
here to emphasize its difference from the triplet (h, r, t), even though
h, t and v are entities while r and k are relations.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Marie Curie University of Paris
educated at

academic major : Physics

academic degree : Master of Science

(a) A hyper-relational fact.

education_major : Physics

education_degree : Master of Science

education_head : Marie Curie

education_tail : University of Paris

(b) N-ary representation of the fact.

Human Educational Institution
educated at

academic major

academic degree : Postgraduate Degree

: Academic Discipline

(c) Schema of the hyper-relational fact.

Fig. 1: An example of a hyper-relational fact and its corresponding n-ary representation and schema information.

additional triplets from a hyper-relational fact via relation
paths [12]. In our previous work [14], we have conducted ex-
tensive experiments using a hypothesis test showing that all
these three transformations lead to significant performance
degradation of up to 29.3% across different link prediction
tasks and datasets.

Against this background, in this paper, we investigate
the problem of hyper-relational Knowledge Graph embed-
ding. In the current literature, a few recent studies consider
such hyper-relational data [12], [13], [16], [17]. These works
consider a set of relations as a so-called n-ary (or multi-fold)
relation, while the associated entities then become instances
of that relation. Figure 1b shows an n-ary representation
of the above example about Marie Curie. An n-ary rela-
tion ”education” is extracted from the hyper-relational fact,
containing the following four relations: education head, edu-
cation tail, education major and education degree; the hyper-
relational fact is then represented as a set of key-value
(relation-entity) pairs only, i.e., {education head:Marie Curie,
education tail:University of Paris, education major:Physics, ed-
ucation degree:Master of Science}. Subsequently, using such
an n-ary representation, existing approaches to link predic-
tion either learn to model the relatedness of entities [12],
[16], or learn from the relatedness between entity/relation
pairs [13], [17]. However, key-value pairs (k, v) on a hyper-
relational fact should not be treated identically as base
triplet (h, r, t). As triplets still serve as the fundamental
data structure in modern KGs, they preserve the essential
information for link prediction. Thus, it is highly beneficial
to directly capture the structure of the base triplets in hyper-
relational facts [14], [18].

Moreover, to further exploit the hyper-relational facts,
the schema information of the KG should be seamlessly
incorporated into the KG embeddings. Specifically, schema
information of KGs has been shown to be useful for resolv-
ing link prediction tasks [17], [19], [20]. Figure 1c shows
the partial schema information on Wikidata related to the
example about Marie Curie. When predicting {Marie Curie,
educated at, ?}, its corresponding schema represented as an
entity-typed triplet {Human, educated at, ?} suggests that
the missing tail entity is likely to be of types Educational
Institution, Monastery, or chess club, etc., according to Wiki-
data2. This can effectively help predict the missing entity
by favoring the entities of these types. In the context of
hyper-relational facts, the schema information on key-value
pairs can further help the prediction. Following the previous
example, the schema of the key-value pair {academic degree,

2. https://www.wikidata.org/wiki/Property:P69

Master of Science} is represented by an entity-typed key-
value pair {academic degree, Postgraduate Degree}, which can
serve as a strong clue to further favor the entity type Educa-
tional Institution. Because a Postgraduate Degree is more likely
to be given by an Educational Institution, rather than by a
monastery or a chess club. Therefore, such schema information
is essential in learning high-quality KG embeddings for link
prediction over hyper-relational facts.

Motivated by the above observation, we propose in
this paper sHINGE, a schema-aware Hyper-relatIonal
kNowledge Graph Embedding model. sHINGE is designed
to directly learn from hyper-relational facts and their corre-
sponding schema in a KG, capturing not only the primary
structural information of the KG encoded in the triplets
and their associated key-value pairs, but also the schema
information represented by entity-typed triplets and their
associated entity-typed key-value pairs. More precisely, for
each hyper-relational fact, we first design two modules, each
consisting of two convolutional neural network pipelines.
On one hand, we learn from a base triplet (h, r, t) and
associated key-value pairs together with the triplet itself
(h, r, t, k, v), generating a triple-wise relatedness feature
vector and quintuple-wise relatedness feature vectors, re-
spectively. Afterward, we compute the fact relatedness fea-
ture vector for the hyper-relational fact by taking the min-
imum value along each feature dimension over the triple-
wise relatedness feature vector and all the quintuple-wise
relatedness feature vectors. The basic assumption behind
this operation is that for a valid hyper-relational fact, both
the relatedness for the base triplet (h, r, t) and the relat-
edness between each key-value pair (k, v) and the base
triplet should be high. On the other hand, we learn from the
corresponding entity-typed triplet(s) (h type, r, t type) and
each associated entity-typed key-value pairs together with
the entity-typed triplet itself (h type, r, t type, k, v type),
generating triple-wise schema relatedness feature vector(s)
and quintuple-wise schema relatedness feature vector. Then,
we also impose the same minimum operation as depicted
above on these feature vectors to obtain the schema related-
ness feature vector. Finally, based on the fact and schema
relatedness feature vectors, we concatenate them into an
overall relatedness feature vector and employ a fully con-
nected projection to output the predicted score for the input
hyper-relational fact. Our contributions are hence three-fold:
• We investigate the problem of schema-aware hyper-

relational Knowledge Graph embedding, where each
hyper-relational fact not only contains a base triplet to-
gether with an arbitrary number of key-value pairs, but
also is associated with the corresponding hyper-relational

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

schema information represented as entity-typed triplets
and key-value pairs.

• We introduce sHINGE, a schema-aware Hyper-relatIonal
kNowledge Graph Embedding model, designed to di-
rectly learn from hyper-relational facts and their corre-
sponding schema information in a KG, capturing not only
the primary structural information of the KG encoded in
the triplets and their associated key-value pairs, but also
the schema information encoded by entity-typed triplets
and their associated entity-typed key-value pairs.

• We conduct a thorough evaluation of our method com-
pared to a sizeable collection of 21 baselines on two
real-world KG datasets using two link prediction tasks.
Our results show that sHINGE consistently outperforms
the best-performing triple-based KG embedding method,
hyper-relational KG embedding method, and schema-
aware KG embedding method by 19.1%, 1.8%, and 12.9%,
respectively.

2 RELATED WORKS

Graph embeddings have become a key paradigm to learn
representations of nodes in a graph and facilitate down-
stream graph analysis tasks [21], [22], [23]. As a specific
type of graphs, Knowledge Graphs contain both semantic-
enriched nodes (entities) and edges (relations). Therefore,
KG embedding techniques learn representations of entities
and relations in a KG by preserving the relations between
entities [10]. In the following, we briefly discuss existing
KG Embedding techniques learning from 1) triplets only,
2) triplets with other data, 3) hyper-relational facts, and 4)
schema of KGs.

2.1 KG Embeddings from Triplets

In the current literature, most of the existing KG embedding
techniques learn from a set of triplets (h, r, t) extracted
from an input KG. These techniques can be classified into
two broad categories, i.e., translational distance models and
semantic matching models [24]. First, translational distance
models exploit distance-based scoring functions to create
embeddings. One representative model of this family is
TransE [11], which creates embeddings from triplets (h, r, t)
such that the relation between the head and tail entities are
preserved as h + r ≈ t. Several works further improve
TransE to capture richer KG structures—such as multi-
mapping relations (one-to-many, many-to-one, or many-to-
many)—using a more sophisticated scoring function involv-
ing relation-specific hyperplanes [25] or spaces [26], [27],
[28], for example. Second, semantic matching models exploit
similarity-based scoring functions. One typical model in that
context is RESCAL [29]. It represents each entity as a vector
and each relation as a matrix, and uses a bilinear function
to model the relation between two entities. Several works
also extend RESCAL by putting a specific focus on reducing
the model complexity [30], by capturing asymmetric rela-
tions [31], or by modeling non-linear relations using neural
networks [32], [33], [34], [35], [36].

However, representing a KG using triplets only often
oversimplifies the complex nature of the data stored in the
KG, in particular for hyper-relational data, where each fact

contains multiple relations and entities (see example above).
Even though a hyper-relational fact can be transformed to
triplets by either keeping the base triplets only or creating
additional triplets via reification [15] or relation paths [12],
none of these transformations is ideal for knowledge graph
embeddings, as the former transformation setting incurs
irreversible information loss in the KG embeddings while
the latter two settings generate additional entities/relations
distracting the KG embedding method from capturing the
essential information for link prediction [14]. Therefore, it
would be highly beneficial to learn KG embeddings directly
from such hyper-relational facts.

2.2 KG Embeddings from Triplets with other Data
We also note that there are a few works on KG embeddings
considering other data together with the triplets. According
to the sources of such data, these works can be classified
into two categories, i.e., data in the KG and third-party data.
First, besides triplets linking entities via relations, other data
contained in a KG can be incorporated into KG embeddings.
For example, multi-modal attributes associated with entities
(a.k.a. literals), such as non-discrete numerical literals [37],
[38] or text literal [39], have been shown to improve the
KG embeddings on various tasks; images associated with
entities have also been used to improve entity matching
tasks (matching entities across different KGs) [40]. These
works mainly focus on using multi-modal data to enrich the
representation of entities, while triplets remain the only re-
lational representation between entities, which differs from
our work focusing on hyper-relational facts. Second, some
related techniques learn entity/relation embeddings from
triplets in a KG jointly with third-party data sources, in
particular with text (e.g., Wikipedia articles) [41], [42], [43],
[44], [45], [46], [47], [48], [49], [50]. These works focus on
combining the advantages of a KG with further (textual)
data sources to learn both entity/relation and word embed-
dings simultaneously, which differs from our work learning
from a KG only while considering hyper-relational facts.

2.3 KG Embeddings from Hyper-Relational Facts
Some recent works on KG embeddings started to con-
sider hyper-relational data (a.k.a. multi-fold or n-ary rela-
tional data) [12], [13], [16]. These works transform a hyper-
relational fact into an n-ary representation, i.e., a set of
key-value (relation-entity) pairs while completely avoiding
triplets. For example, in [13], a hyper-relational fact (h, r, t)
with (k, v) is transformed into {rh:h, rt:t, k:v} by converting
the relation r into two keys rh and rt, associated with
head h and tail t, respectively. Using this representation,
these works learn the relatedness between entity/relation
pairs for predicting missing links in KGs. Specifically, m-
TransH [12] models the interaction between entities in-
volved in each fact in order to perform link prediction on
missing entities. RAE [16] further extends m-TransH by
considering the relatedness between entities in each fact
for performing instance reconstruction, i.e., predicting one
or multiple missing entities in a fact. As these two works
capture only the relatedness between entities and can thus
only predict missing entities, NaLP [13] was later proposed
to model the relatedness between key-value (relation-entity)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

pairs contained in each fact, which enables the prediction of
either a missing key (relation) or a missing value (entity).
NeuInfer [18] treats the information in the same n-ary fact
discriminatively and represents each n-ary fact as a primary
triplet associated with a set of descriptive key-value pair(s).
HypE [51] improves entity embeddings with positional
embeddings, which is employed to capture the semantics
of an entity referring to its position in a relation. Hyper-
MLN [52] interprets the path-reasoning process with first-
order logic, simultaneously improving knowledge embed-
dings and logic rules optimization. Different from modeling
hyper-relational facts in Euclidean space, PolygonE [53]
represents n-ary relations in hyperbolic space, capturing the
hierarchical structure. Tensor decomposition which yields
satisfactory performance in triplet embeddings can also be
generalized for hyper-relational facts. GETD [54] integrates
Tucker decomposition with Tensor Ring decomposition, re-
sulting in a favorable performance for hyper-relational facts
with different arities. S2S [55] further extends GETD to learn
from hyper-relational facts with mixed arity through em-
bedding sharing techniques. Enlightened by the powerful
ability of Transformer [56] in sequence modeling, some re-
cent works represented a hyper-relational fact as a semantic
sequence and applied a self-attention mechanism to capture
sophisticated interactions between sequence elements. StarE
[57] combines a message-passing-based graph encoder with
a Transformer-based decoder to model hyper-relational facts
with an arbitrary number of key-value pairs. GRAN [58]
represents a hyper-relational fact as a heterogeneous graph
and employs edge-biased attention to capture inter-vertex
interactions. Hy-Transformer [59] extends StarE substituting
the graph encoder by a lightweight relation/type embed-
ding technique, improving the efficiency of link prediction.
QUAD [60] also extends StarE by adopting two separate
aggregators to encode the primary entity-typed triplets and
associated key-type pairs, respectively.

However, transforming a hyper-relational fact into an
n-ary representation (i.e., as a set of key-value pairs) is
inherently incompatible with the schema used by modern
KGs, where triplets still serve as the fundamental data
structure. In other words, key-value pairs (k, v) on a hyper-
relational fact should not be treated identically to base
triplets (h, r, t), as the latter actually preserves the essential
information for link prediction in the KGs. Therefore, in this
paper, we design sHINGE to directly learn from the base
triplets even for hyper-relational facts, while simultaneously
learning from the associated key-value pairs.

2.4 Schema-aware KG Embeddings

A real world KG is usually endowed with an additional
ontological schema depicting the structural logic followed
by the facts in the KG, which has the potential to improve
the link prediction performance over the KG. Some recent
works focused on the fusion of schema into KG embeddings.
SIC [61] completes a KG by iteratively checking the correct-
ness of candidate triplets against the KG schema. MTE [62]
models the relations and schema in a KG simultaneously to
enhance the representation ability, where the multi-types of
each entity are formulated as a taxonomy tree and fed into a
multi-type embedding layer to produce the type-level entity

embedding. tNaLP [20] is an extension of NaLP [13], which
learns type embeddings by introducing type constraints of
roles and role-values in an unsupervised manner. RETA [19]
is an end-to-end solution fully leveraging schema informa-
tion encoded in triplets. It raises the matching of relation-
tail pairs by considering the plausibility of both triplets and
their corresponding schema. RAM [17] represents schema
by linear combinations of basic vectors in a latent space,
which promotes the semantically related entity types to
have close representations.

However, modeling the schema of a KG as the n-ary rep-
resentation of entity types in a hyper-relational fact cannot
fully benefit from the rich semantics encoded in the schema.
Similar to the case for hyper-relational facts, the base entity-
typed triplet possesses the fundamental schema information
of a hyper-relational fact and should be treated as the main
structure (as we show in our experiments in Section 5.2).
In other words, the entity-typed key-value pairs should
serve as the companions for the base entity-typed triplet.
Therefore, in this paper, we propose sHINGE to capture
such hyper-relational schema by learning from both the base
entity-typed triplets and associated entity-typed key-value
pairs simultaneously.

3 SCHEMA-AWARE HYPER-RELATIONAL KG EM-
BEDDINGS

In this section, we introduce sHINGE, our proposed KG
embedding model learning from both hyper-relational facts
and their corresponding schema. We introduce several for-
mal definitions:
Definition 1. Hyper-relational fact: A hyper-relational fact

contains a base triplet (h, r, t) and a set of associated
key-value pairs (ki, vi), i = 1, ..., n.

Definition 2. Triple fact: A triple fact contains a triplet
(h, r, t) only.

Definition 3. Schema: The ontology represents the se-
mantics of facts in a KG. In this study, we formu-
late the schema for fact (h, r, t) as entity-typed triplet
(h type, r, t type) while for an associated key-value pair
(ki, vi) as (ki, vi type).

Based on these definitions, Figure 2 illustrates our pro-
posed model sHINGE. It is designed to directly learn from
both hyper-relational facts and their corresponding schema
in a KG, capturing not only the structural information of
the KG characterized by hyper-relational facts, but also the
schema information encoded in the hyper-relational facts.
More precisely, sHINGE consists of three parts. The first
part learns from the hyper-relational facts. For each hyper-
relational fact containing a base triplet (h, r, t) and associ-
ated key-value pairs (ki, vi), i = 1, ..., n, it 1) learns from
the base triplet (h, r, t), generating a triple-wise relatedness
feature vector for h, r and t, and 2) learns from each key-
value pair (k, v) associated with the base triplet together
with the triplet itself, generating the quintuple-wise relat-
edness feature vector between h, r, t, k and v, respectively.
Afterward, it 3) merges these relatedness feature vectors to
a unique hyper-relational relatedness feature vector. On the
other hand, the second part learns the schema information

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

from hyper-relational facts. For the same hyper-relational
fact fed into the first part, it 1) learns to capture the corre-
sponding schema information encoded in the base triplet,
generating a set of triple-wise schema relatedness feature
vectors, one for each entity-typed triplet (h type, r, t type),
and 2) learns to capture the corresponding schema infor-
mation encoded in each key-value pair associated with the
base triplet together with its corresponding entity-typed
triplets, generating a set of quintuple-wise schema relat-
edness vectors, one for each entity-typed hyper-relational
fact (h type, r, t type, k, v type). Likewise, it then 3) merges
these relatedness feature vectors to a unique schema relat-
edness feature vector. Finally, the obtained hyper-relational
and schema relatedness feature vectors are concatenated
to generate a final prediction score. In the following, we
present the details of these three modules.

3.1 Learning from Hyper-relational Facts
Learning from Triplets. In both triple or hyper-relational
facts, (base) triplets encode the primary structural informa-
tion of a KG, and thus capture essential information for link
prediction in the KG. To learn from a (base) triplet (h, r, t),
we resort to a Convolutional Neural Network (CNN) to
model the intrinsic interaction between the three elements
in the triplet, i.e., head h, relation r and tail t, in order
to generate a triple-wise relatedness feature vector. More
precisely, as shown in Figure 2, we start by concatenating
the three corresponding embedding vectors h⃗, r⃗, t⃗ ∈ RK (K
is the embedding dimension) into an “image” T ∈ R3×K ,
which is the input for a 2D convolutional layer with nf
filters of size 3×3. The filter of size 3 is chosen to capture the
triple-wise relatedness between h⃗, r⃗ and t⃗. This layer returns
nf feature maps of sizeK−2, which are then flattened into a
triple-wise relatedness vector ϕ⃗ ∈ R1×nf (K−2). The process
of learning from a triplet can be formulated as:

ϕ⃗ = Flatten

(
Conv

([
h⃗, r⃗, t⃗

]T
,Wϕ

))
(1)

where [·, ·] denotes the concatenation operation along the
row of input vectors and Wϕ is the learnable parameters
of CNN filters. This relatedness vector ϕ⃗ can be used to
characterize the plausibility of a (base) triplet (h, r, t) of
being true.
Learning from Key-Value Pairs. Key-value pairs contain
further information describing the associated base triplet in
a hyper-relational fact, which suggests that learning from
key-value pairs should be coupled with the corresponding
triplet. Therefore, for each key-value pair (ki, vi) associated
with the base triplet (h, r, t) in a hyper-relational fact, we
also resort to a CNN to capture the interaction between each
elements in the triplet and the key-value pair, i.e., h, r, t, ki
and vi, in order to generate a quintuple-wise relatedness
feature vector.

As shown in Figure 2 and similar to the case of learning
from triplets, we first concatenate the five corresponding
embedding vectors h⃗, r⃗, t⃗, k⃗i, v⃗i ∈ RK into an “image” H ∈
R5×K , and feedH to a 2D convolutional layer with nf filters
of size 5 × 3. The first dimension size 5 of the filter here is
chosen to capture the quintuple-wise relatedness between
h⃗, r⃗, t⃗, k⃗i and v⃗i; the second dimension size 3 is chosen to

match the filter size of the CNN for base triplets, in order to
merge the resulting relatedness feature vectors (see below).
This layer returns nf feature maps of size K − 2, which
is then flattened into the quintuple-wise relatedness vector
ψ⃗i ∈ R1×nf (K−2). This process is repeated for each key-
value pair (ki, vi), i = 1, .., n, in the input hyper-relational
fact containing n key-value pairs, resulting in n quintuple-
wise relatedness vectors ψ⃗i, i = 1, .., n. The learning process
from a key-value pair can be formulated as:

ψ⃗i = Flatten

(
Conv

([
h⃗, r⃗, t⃗, k⃗i, v⃗i

]T
,Wψ

))
(2)

where Wψ denotes the learnable parameters of CNN filters,
which is shared by multiple key-value pairs. This related-
ness vector ψ⃗i can be used to characterize the plausibility
of the base triplet (h, r, t) associated with the key-value pair
(ki, vi) being a true fact. Note that this module is not used
for triple facts, as they do not contain any key-value pair.
Merging Relatedness Feature Vectors. In the previous two
steps, for each hyper-relational fact, one triple-wise related-
ness vector ϕ⃗ is generated from the base triplet (h, r, t) while
n quintuple-wise relatedness vectors ψ⃗i are generated from
the n key-value pairs together with the base triplet. We now
wish to merge these relatedness feature vectors in order to
make final prediction for the input hyper-relational facts. To
achieve this goal, we compute the fact relatedness feature
vector by taking the minimum value along each feature
dimension over the triple-wise relatedness feature vector
and all the quintuple-wise relatedness feature vectors. We
concatenate the triple-wise relatedness feature vectors ϕ⃗ and
the n quintuple-wise relatedness vectors ψ⃗i into a matrix of
size (n+ 1)× nf (K − 2), and compute the minimum value
of this matrix along each column, resulting in the fact re-
latedness feature vector h⃗f . This process can be formulated
as:

h⃗f = Min
([
ϕ⃗; ψ⃗1; ψ⃗2; . . . ; ψ⃗n

])
(3)

where [·; ·] refers to the concatenation operation along the
column of input vectors. The underlying assumption for
this operation is that for a valid hyper-relational fact, both
1) the relatedness for the base triplet (h, r, t) and 2) the
relatedness between each key-value pair (k, v) and the base
triplet (h, r, t) should be high. While each entry of a triple-
wise (or quintuple-wise) relatedness feature vector actually
measures the relatedness between h, r, t (or between h, r, t,
ki vi) under a certain filter, the minimum relatedness along
each feature dimension is expected to be high. Similar ideas
have also been successfully applied by previous works to
merge relatedness scores in a neural network [13], [14].

3.2 Learning from Schema
Learning from Entity-typed Triplets. Schema information
encoded in triplets is crucial for evaluating the semantic
plausibility and in turn enhancing the link prediction per-
formance. Thus, the schema information is also extracted by
CNN to capture the interactions between the elements in the
entity-typed triplet. With the similar procedure to learning
from triples, a triple-wise schema relatedness vector ξ⃗j ∈

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

…

…

…

…

filters

Convolve

…

…

…
…

feature maps

Fla�en

…

…

…

…

filters

Convolve

…

…

…
…

feature maps

Fla�en…

…

…

Repeat for all (,) pairs in a hyper-rela�onal fact

…

…………

Concatenate min

Fully
connected
projec�on

Predicted
score

Triple-wise
relatedness feature

vector for h, r, t

Quintuple-wise
relatedness feature vector

for h, r, t, ki ,vi

…………

…………

…………

…………

…

…………

Fact relatedness

feature vector

Pipeline 1: Learning from Triplets

Pipeline 2: Learning from Key-Value Pairs

…

…………

…

…

…

…

filters

Convolve

…

…

…
…

feature maps

Fla�en

Triple-wise schema
relatedness feature

vector for

h_typep , r, t_typeq

…………

Pipeline 4: Learning from En�ty-typed Triplets

…
…

…

…

…

…

filters

Convolve

…

…

…
…

feature maps

Fla�en…

…

…

Repeat for all (,) pairs in a hyper-rela�onal fact

…
…………

Quintuple-wise schema
relatedness feature

vector for
h_typep , r, t_typeq , ki , vi _typeo

…

…………

Repeat for all en�ty-typed triplets associated with (, ,)

Pipeline 5: Learning from En�ty-typed Key-Value Pairs

min

…………

…………

…………
…

…………

Schema relatedness

feature vector

Concatenate

C
o

n
caten

ate

…………

…

…………

…

Pipeline 3: Merging Relatedness Feature Vectors

Pipeline 6: Merging Relatedness Feature Vectors

Pipeline 7: Predic�on Using
Relatedness Feature Vectors

Fig. 2: Overview of our proposed method sHINGE. The blue, red and green backgrounds correspond to the module 1, 2
and 3 (Section 3.1, 3.2 and 3.3), respectively.

R1×nf (K−2) is obtained given a specific input entity-typed
triplet (h typep, r, t typeq). The learning process from an
entity-typed triplet is akin to Formula (1), which is shown
as follows:

ξ⃗j = Flatten

(
Conv

([−−−−→
h typep, r,

−−−−→
t typeq

]T
,Wξ

))
(4)

where Wξ denotes the learnable parameters of CNN filters.
This relatedness feature vector ξ⃗j facilitates the plausibility
characterization of a base triplet being true. Here,

−−−−→
h typep

and
−−−−→
t typeq denote a given head type and tail type, respec-

tively. Assume that 1 ≤ p ≤ m1 and 1 ≤ q ≤ m2, we obtain
m1m2 relatedness feature vectors ξ⃗j , j = 1, ..,m1m2 after
the iterative convolutional operations.
Learning from Entity-typed Key-Value Pairs. Inheriting the
idea of key-value pairs learning process, the entity-typed
key-value pairs are coupled with the corresponding entity-
typed triplet to learn the further schema information. For
each entity-typed key-value pair (ki, vi typeo) associated
with the entity-typed triplet (h typep, r, t typeq), the CNN
with the same structure as that of learning from key-value
pairs is applied to capture the interaction between each
element in the entity-typed triplet and the entity-typed
key-value pair, i.e., h typep, r, t typeq , ki and vi typeo,
and then generate the quintuple-wise relatedness vector

ζ⃗u ∈ R1×nf (K−2). The learning process is similar to Formula
(2), which is presented as follows :

ζ⃗u = Flatten
(
Conv

([−−−−→
h typep, r,

−−−−→
t typeq, k⃗i,

−−−−→
vi typeo

]T
,Wζ

))
(5)

where Wζ is the learnable parameters of CNN filters. Here,−−−−→
vi typeo refers to a given value type. This relatedness fea-
ture vector ζ⃗u is beneficial to the plausibility characteriza-
tion of the base triplet (h, r, t) associated with the key-value
pair (ki, vi) being true. Assume that 1 ≤ o ≤ c, we obtain
m1m2nc relatedness feature vectors ζ⃗u, u = 1, ..,m1m2nc
after the repeated process of convolution.
Merging Relatedness Feature Vectors Referring to the
merging process of the first module, the schema related-
ness feature vector is calculated by taking the minimum
value along each feature dimension over the triple-wise
schema relatedness feature vector and all the quintuple-
wise schema relatedness feature vectors. More precisely,
the m1m2 triple-wise schema relatedness feature vectors
ξ⃗j and the m1m2nc quintuple-wise schema relatedness
feature vectors ζ⃗u are concatenated into a matrix of size
(m1m2 + m1m2nc) × nf (K − 2), and then the minimum
operation is applied to this matrix along each column,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

producing the schema relatedness feature vector h⃗s. This
process can be formulated as:

h⃗s = Min
([
ξ⃗1; ξ⃗2; . . . ; ξ⃗m1m2 ; ζ⃗1; ζ⃗2; . . . ; ζ⃗m1m2nc

])
(6)

3.3 Prediction Using Relatedness Feature Vectors

Based on the above two modules, we obtain a fact relat-
edness feature vector h⃗f and a schema relatedness feature
vector h⃗s, both of which have the same size of 1×nf (K−2).
Subsequently, these two vectors are concatenated into the
overall relatedness feature vector of size 2 × nf (K − 2).
Finally, we use a fully connected projection to output the
predicted score σ from the overall relatedness feature vector
for the input hyper-relational fact. The pseudocode of the
proposed method is presented in Algorithm 1.

3.4 Model Training Process

To train the model parameters, we minimize a softplus loss.
More precisely, following [13], [31], our loss function is
defined as the negative log-likelihood of the logistic model:∑

ω∈Ω

log(1 + e−σ(ω)) + log(1 + eσ(ω
′)) (7)

where Ω is the input set of hyper-relational facts. For each
hyper-relational fact ω containing (h, r, t) and the associated
(ki, vi), i = 1, ..., n, one negative sample ω′ is generated by
randomly corrupting one entity (h, t, or vi) or relation (r
or ki). σ(ω) and σ(ω′) denote the predicted score of our
sHINGE model for the true fact ω and the negative fact ω′,
respectively.

The loss function 7 is minimized using the Adam
stochastic optimizer [63], and the model parameters are
learnt via back propagation. Specifically, we use rectified
linear units (ReLU) as the non-linearity activation function
[64] and batch normalization [65] after the two CNN layers
for fast training.

4 DISCUSSION

4.1 Complexity of sHINGE

In this section, we discuss the complexity of the proposed
sHINGE. Given the number of training facts N , its time
complexity isO(N ·e type3 ·n·nf ·K), where e type denotes
the average number of types per entity, and n denotes the
average number of key-value pairs per entity.

Note that the cubic term e type
3 is caused by the

learning process of entity-typed key-value pairs, where
a relatedness feature vector is learnt from quintuples
(h type, r, t type, k, v type), requiring iterating all combi-
nations of h type, t type, and v type. To alleviate this
complexity issue, we can limit the number of types learnt
per entity in practice, i.e., setting an upper bound for e type
to limit the complexity. In practice, it has been shown that
a small number of entity types are enough to capture the
schema relatedness for KG completion tasks [19]. Subse-
quently, in this paper, we learn from the top one type for
each entity, where the types are ranked according to their
popularity in the whole KG. In this context, as e type = 1,

Algorithm 1: Link prediction using sHINGE.
Input:

A hyper-relational fact, (h, r, t, ki, vi, . . .);
The corresponding schema,
(h type, r, t type, ki, vi type, . . .);
The entity embedding set, E;
The relation embedding set, R;
The type embedding set, T.

Output:
The plausibility score σ.

ϕ⃗← Formula (1)
while i ≤ n do
ψ⃗i ← Formula (2)

end while
h⃗f ← Formula (3)
while j ≤ m1m2 do
ξ⃗j ← Formula (4)

end while
while u ≤ m1m2nc do
ζ⃗u ← Formula (5)

end while
h⃗s ← Formula (6)
Concatenate h⃗f and h⃗s

σ ← Fully connected projection of
[
h⃗f , h⃗s

]T

the time complexity of sHINGE O(N · e type3 · n · nf ·K)
simplifies to O(N · n · nf ·K).

In the future, we plan to address the complexity issue
from two aspects: 1) investigate more on scalable methods
(via sampling techniques for example) to reduce such a cu-
bic complexity when learning from hyper-relational schema;
and 2) explore type fusion methods to feed an aggregated
type into sHINGE for each entity.

4.2 Learning from Facts with Missing Information
Missing information is common in modern KGs. For hyper-
relational KG embeddings, the missing information can be
in the two following cases: 1) some entities in a fact are
not associated with any types; and 2) some facts are not
associated with any key-value pairs (i.e., triple fact). In
this context, sHINGE is designed to flexibly accommodate
such facts with missing information. Specifically, sHINGE
separately computes the relatedness feature vectors with
respect to triplets, key-value pairs and their corresponding
schema information, and then merges these relatedness
feature vectors for the final prediction. It can flexibly handle
the two cases: 1) When an entity has no type information in
a KG, we assign an ”unknown” type to the entity, and then
keep the same processing pipeline for prediction. Notably,
the ”unknown” type is utilized as a common type for
entities with missing type information as ”Schema.org”3,
which employs the type ”Thing” to encapsulate all entities
on the Internet. This ensures that sHINGE is able to learn

3. https://schema.org/docs/full.html: ”Schema.org” provides the
schema for structured data on the Internet and has been widely adopted
by many world-class technology companies, such as Google, Microsoft
and Pinterest.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

from the facts with missing entity types. 2) When a fact has
no key-value pairs, sHINGE only calculates the triple-wise
relatedness feature vector in the first module and triple-wise
schema relatedness feature vector in the second module
(pipelines 1 and 4 in Fig. 2, respectively). Subsequently,
these two feature vectors are fed into the module 3 (pipeline
7 in Fig. 2) to produce the final prediction score.

4.3 Entities with Hierarchical Types
The underlying hierarchical structure of entity types could
also be useful for KG link prediction. There are two cat-
egories of treatment for the hierarchy of entity types. The
first category explicitly models the hierarchy of types to
support embedding. HAKE [66] employs the polar coor-
dinate system to represent an entity at different levels of
the hierarchy, while TaRP [67] assigns different weights
to entity types according to their positions in the hier-
archy. The second category implicitly models hierarchical
types and produces aggregated type information. DHGE
[68] integrates hierarchical types by a hypergraph neural
network, while AttEt [69] proposes neighborhood attention
to aggregate hierarchical types with type-specific attention
weights. In this study, sHINGE handles entity types equally.
However, the treatment for hierarchical types mentioned
above can be easily incorporated into sHINGE due to its
flexible network structure. The fusion of the type hierarchy
will be considered in our future work.

4.4 Negative Sampling Learning Scheme
We discuss and compare the two mainstream learning
schemes for hyper-relational KGs, i.e., 1) negative-sampling-
based learning methods adopted by NaLP [13], NeuInfer
[18], HypE [51], HyperMLN [52], GETD [54], as well as
our sHINGE; and 2) self-attention-based methods (with full
softmax) adopted by GRAN [58], StarE [57], Hy-Transformer
[59] and QUAD [60], in the following three aspects:
• Full softmax approximation using negative sampling. The

softmax function is commonly used in these self-attention-
based methods to distinguish the most likely element for
each missing element in a hyper-relational fact. However,
the computation of the full softmax function faces great
computational challenges for large-scale KGs with a large
number of candidate entities and relations for one missing
element. By contrast, negative sampling is an efficient
technique to approximate the full softmax function and
is often used on large-scale problems [70].

• More than one missing element and fact-level scoring. Self-
attention-based methods are often limited to predicting
only one missing element for a given hyper-relational
fact due to the mask mechanism [58], while negative-
sampling-based methods are more flexible to predict any
number of missing elements for a fact as it is capable
of evaluating a fact-level plausibility score for any given
fact [19]. In other words, negative sampling methods offer
more flexibility in knowledge representation and better
interpretability of link prediction [71].

• Arity-sensitive complexity. Self-attention-based methods
usually adopt a padding mechanism in the training pro-
cess so as to accommodate different fact arities; subse-
quently, the size of input depends on the largest arity in a

dataset. However, for modern KGs, only a few facts have a
very large arity, which makes such a padding mechanism
inefficient because a large number of inputs are indeed
padded [57], [58], [59], [60]. In practice, these methods
often set an upper bound for the maximum arity for a
bounded complexity. In contrast, as discussed in Section
4.1, the complexity of sHINGE does not depend on the
maximum fact arity in the KG.

Therefore, we advocate for the negative-sampling-based
methods in this paper, even though self-attention-based
methods sometimes show promising performance in some
tasks [58].

5 EXPERIMENTS

In this section, we evaluate our proposed model sHINGE
on various link prediction tasks. We start by presenting our
experimental setup, followed by our results and discussions.

5.1 Experimental Setup
5.1.1 Dataset
We conduct experiments on two hyper-relational datasets
JF17K [12] and WikiPeople [13], extracted from two popular
KGs, i.e., Freebase and Wikidata, respectively. Each of these
two datasets contains both triple facts and hyper-relational
facts. While JF17K was filtered from Freebase to have a sig-
nificant presence of hyper-relational facts (see [12] for more
detail), WikiPeople is extracted from Wikidata and focuses
on entities of type human without any specific filtering to
improve the presence of hyper-relational facts [13]. As the
original WikiPeople dataset also contains literals (used as
tails) in some facts, we filter out these non-entity literals and
the corresponding facts. Table 1 shows the main statistics of
these datasets.

In practice, open-domain KGs usually do not have a
unified and fixed schema. Even though some effort such as
Schema.org has been made to create the unified and shared
schema for structured data on the Web, such schema still has
a low coverage on the Web, and thus has not been widely
adopted by modern KGs. To fill the shortfall of schema in
JF17K and WikiPeople, we extract the entity type informa-
tion from their corresponding data sources (Freebase and
Wikidata) following the procedure illustrated in [19]. For
Freebase, entity types are crawled through the entity node
described as ”/type/object”. For Wikidata, entity types are
extracted from the property ”instance of” for each entity.
Notably, all types are treated equally in this study, and the
hierarchy of entity types remains as the future work, as
pointed out in the previous discussion section.

5.1.2 Baselines
We compare sHINGE against a sizeable collection of state-
of-the-art KG embedding techniques from three categories.
First, models learning from triplets only:
• Translational distance models: TransE [11] learns to pre-

serve the relation between two entities as h + r ≈ t.
TransH [25] extends TransE to better capture multi-
mapping relations by introducing relation-specific hy-
perplanes. TransR [26] introduces relation-specific pro-
jections to also better capture multi-mapping relations.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 1: Statistics of the datasets

Dataset JF17K WikiPeople
#Entity 28,645 34,839
#Relation 322 375
#Type 652 395
#Fact 100,947 325,504
#Triple Fact w/ types 46,210 265,573
#Triple Fact w/o types 8,417 51,544
#Hyper Fact w/ types 40,725 7,534
#Hyper Fact w/o types 5,595 826

#Fact
(training)

Triple only 44,210 57.8% 280,520 97.4%
Hyper only 32,169 42.2% 7,389 2.6%
Total 76,379 100% 287,918 100%

#Fact
(test)

Triple only 10,417 42.4% 36,597 97.4%
Hyper only 14,151 57.6% 971 2.6%
Total 24,568 100% 37,586 100%

TransD [27] extends TransR by decomposing the projec-
tion matrix into a product of two vectors. These mod-
els minimize a margin-based ranking objective function,
where we empirically set the margin b = 1 with the L2-
norm. In addition, we set the learning rate to 0.001 with
a stochastic gradient descent optimizer, the number of
negative samples to 1, and the batch size to 128.

• Semantic matching models: Rescal [29] represents each
entity as a vector and each relation as a matrix, and uses
a bilinear function to model the relation between a pair of
entities. DistMult [30] simplifies Rescal by representing
each relation embedding as a diagonal matrix. ComplEx
[31] further extends DistMult in the complex space in or-
der to better model both symmetric and asymmetric rela-
tions. Analogy [72] models explicitly analogical structures
in multi-relational KG embeddings. ConvE [33] adopts a
2D CNN to capture richer interactions between entity and
relation embeddings. We set the margin b = 1 with the
L2-norm for Rescal. For DistMult, ComplEx and Analogy,
we set the learning rate to 0.1 with Adagrad optimizer
[73], the number of negative samples to 1, and the batch
size to 128. For ConvE, we set the learning rate to 0.003,
the batch size to 128, the dropout to 0.2, and the label
smoothing value to 0.1.

Second, models learning from hyper-relational facts. As
discussed in Section 4.4, we focus on negative-sampling-
based methods and exclude self-attention-based models in
our experiments even though the latter sometimes show
promising performance in some tasks.
• m-TransH [12] models the interaction between entities

involved in each n-ary fact. Each fact is represented as
a list of ordered values associated with a meta-relation.
Using this representation, m-TransH can only be applied
to perform the link prediction task on missing entities.

• RAE [16] extends m-TransH by explicitly considering the
pairwise relatedness between entities in n-ary facts. Using
the same n-ary representation of hyper-relational facts,
RAE further learns from the pairwise relatedness between
entities in each n-ary fact. Similar to m-TransH, RAE can
only be used to predict missing entities.

• NaLP [13] models the relatedness between key-value
(relation-entity) pairs contained in each n-ary fact. It rep-
resents each hyper-relational fact as a set of key-value
pairs by converting the relation r into two keys rh and rt,
associating with head h and tail t, respectively. Using this
representation, NaLP learns from the pairwise relatedness

between key-value pairs via a neural network pipeline,
which enables the prediction of both missing keys (rela-
tions) or missing values (entities).

• NaLP-Fix is our variant of NaLP with a fixed negative
sampling process. Specifically, when corrupting the key
rh by a randomly sampled r′h (r ̸= r′), we also corrupt
rt by r′t, resulting in a negative fact {r′h:h, r′t:t, ki:vi}, i =
1, ..., n. Subsequently for this negative fact, only a single
relation r′ links h and t, which is a realistic case. Similarly,
when corrupting rt, we also corrupt rh in the same way.
We keep using the same hyper-parameters as for NaLP.

• NeuInfer [18] represents each hyper-relational fact as a
primary triplet associated with a set of descriptive key-
value pairs. Then it further employs a fully-connected
neural network model to perform the prediction tasks on
hyper-relational facts.

• HypE [51] enhances entity embedding performance with
positional embeddings. Positional embeddings are decou-
pled from entity modeling and are utilized to represent
entities based on their positions in relations.

• HyperMLN [52] is an explainable model that interprets
the path-reasoning process combined with first-order
logic. Logic rules can improve the knowledge embed-
dings, while the semantics captured by the embedding
model benefits the generation of logic rules in turn.

• GETD [54] combines Tucker decomposition with Tensor
Ring decomposition to fully express hyper-relational facts
with any size or arity.

• HINGE [14] is the original version of sHINGE, which
views an n-ary fact as a primary triplet and its associ-
ated key-value pairs, capturing triple-wise and quintuple-
wise relatedness for (h, r, t) and (h, r, t, ki, vi) in a hyper-
relational fact using convolution neural networks.

Third, models learning from the schema of KG:

• SIC [61] iteratively applies different types of knowledge
graph completion models to produce multiple triplets
and then evaluate these triplets by a schema-correctness
metric.

• RAM [17] constructs a latent space that represents types
as linear combinations of basic vectors and thus types
with similar semantics will present close representations
in the space. Subsequently, a pattern matrix is explored
to evaluate the compatibility between the embeddings of
types and related entities.

• tNaLP [20] is the extension of NaLP with the consider-
ation of schema information. In tNaLP, type constraints
are calculated as the type compatibility using a neural
network model. The learnt type constraints are imposed
on the fact embedding pipeline to improve the prediction
performance.

• sHINGE is our proposed method. We empirically set the
number of filters nf in both CNNs to 400, the batch size to
128, and the learning rate to 0.0001. The implementation
of sHINGE and used datasets are available here4.

The embedding size is set to 100 for all methods, if not
specified otherwise.

4. https://github.com/RyanLu32/sHINGE/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

5.1.3 Evaluation Tasks and Metrics
Link prediction is a typical task for Knowledge Graph
completion. Given two elements of a triplet in a (hyper-
relational) fact, the task is to predict the missing one, such as
(?, r, t), (h, ?, t) or (h, r, ?), where the question mark repre-
sents the missing entity/relation. In this paper, we conduct
experiments in all of these three cases, i.e., predicting a
missing head, relation, or tail. We describe our evaluation
protocols below by taking the case of predicting missing
heads (?, r, t) as an example. For the triplet (?, r, t) in one
test (hyper-relational) fact, we replace the missing head
with all the entities, resulting in a set of candidate (hyper-
relational) facts. Among those candidate facts, in addition
to the testing fact itself, other corrupted facts might also be
true facts (i.e., existing in the training/test datasets); these
facts are thus removed from the candidate facts. Afterward,
the resulting candidate facts are fed into an embedding
model to output predicted scores. By ranking the candidate
facts according to their corresponding scores, we generate
a predicted ranking list of entities for the missing head. By
repeating the evaluation process over all test facts in the test
dataset, we report Mean Reciprocal Rank (MRR), Hits@10
and Hits@1, which are widely used metrics for link pre-
diction tasks [13]. The same evaluation protocol and metrics
also apply to predicting missing relations (h, ?, t) and tails
(h, r, ?). As predicting missing heads or tails is essentially
predicting missing entities, we report average results on
these two cases (denoted as “Head/Tail Prediction”), while
we report individual results for relation prediction.

5.2 Link Prediction Performance Comparison
In this experiment, we compare the link prediction per-
formance of sHINGE and HINGE (the original version
of sHINGE, without learning from schema information)
against all baselines on different tasks. Table 2 shows the
results on both datasets. The best-performing method from
each category of techniques is highlighted. In the following,
we discuss the results and our key findings.

5.2.1 Comparison to Baselines Learning from Triplets Only
We observe that both HINGE and sHINGE consistently
outperform all baselines learning from triplets only. Specifi-
cally, sHINGE achieves the best performance in most cases,
showing an improvement of 19.1% over the best-performing
baselines on average (23.1% on head/tail prediction and of
15.1% on relation prediction).

One exception is for the head/tail prediction on
WikiPeople, where the improvement is marginal (1.9%). We
further find that the best-performing baseline in this case is
ConvE, which shows a tiny advantage in MRR but performs
badly in Hit@1 compared to sHINGE (see Table 2). Note that
similar to HINGE and sHINGE, ConvE also uses a 2D CNN
layer for feature extraction from entity/relation embeddings
in triplets, yielding good performance on head/tail pre-
diction. The marginal improvement can be explained by
the dominance of triple facts in WikiPeople dataset (97.4%
triple facts vs 2.6% hyper-relational facts in both training
and test datasets), where both HINGE, sHINGE and ConvE
perform well. In contrast, on JF17K dataset, which contains
a significant portion of hyper-relational facts (57.8% triple

facts vs 42.2% hyper-relational facts in the training dataset
and 42.4% triple facts vs 57.6% hyper-relational facts in the
test dataset), HINGE and sHINGE significantly outperform
ConvE by leveraging key-value pairs in the hyper-relational
facts. In addition, we also highlight that ConvE is specif-
ically designed for head/tail prediction only, and is not
applicable to the relation prediction task.

5.2.2 Comparison to Baselines Learning from Hyper-
Relational Facts
We observe that NeuInfer, HypE, HyperMLN, HINGE and
sHINGE perform significantly better than other n-ary repre-
sentation baselines (m-TransH, RAE, NaLP and NaLP-Fix).
This verifies the superiority of preserving the triple structure over
the n-ary representation when learning hyper-relational facts.

Moreover, among the methods preserving the triple
structure of hyper-relational facts, HINGE (and sHINGE)
perform better than NeuInfer. This is attributed to the
fact that NeuInfer uses a vanilla fully-connected layer for
learning the relatedness feature vectors, while HINGE (and
sHINGE) employs 2D CNNs, capturing the rich interactions
between entities, relations and key-value pairs. Compared
to its original version HINGE, sHINGE further learning
from KG schema information yields 1.8% improvement on
average (1.7% and 1.9% improvements on head/tail predic-
tion and relation prediction, respectively).

5.2.3 Comparison to Baselines Learning from KG Schema
Among the methods learning from hyper-relational facts
with schema information, sHINGE consistently outperforms
all other baselines on both datasets, showing an improve-
ment of 12.9% over the best-performing baselines on aver-
age (15.8% on head/tail prediction and of 10.1% on relation
prediction).

Moreover, we observe that tNaLP and sHINGE consis-
tently outperform their original versions without learning
from KG schema, NaLP and HINGE, by 43.7% and 1.8% on
average, respectively. This verifies the usefulness of KG schema
information in performing link prediction tasks.

Finally, compared to tNaLP which learns from schema
information under the n-ary representation of hyper-
relational facts, sHINGE achieves higher performance. This
implies that when learning from schema information, the triple
structure is also more effective than the n-ary representation.

5.3 Key/Value Prediction Performance Comparison
In this experiment, we compare the performance of sHINGE
and HINGE on a key/value prediction task against all
applicable baselines. Our evaluation protocol is similar to
the one from the link prediction task.

Table 3 shows the results. We discover that both HINGE
and sHINGE consistently outperform all baselines learn-
ing from hyper-relational facts with or without schema
information. The improvement is particularly large when
predicting values on JF17K dataset due to the larger pro-
portion of hyper-relational facts in JF17K than WikiPeople.
This demonstrates that HINGE (and sHINGE) have an
advantage in representing hyper-relational facts. In gen-
eral, sHINGE achieves the best performance in most cases,
yielding an improvement of 3.6% over its original version

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2: Link prediction performance on both WikiPeople and JF17K.

Method
WikiPeople JF17K

Head/Tail Prediction Relation Prediction Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

TransE 0.3242 0.6064 0.1216 0.3482 0.4200 0.2734 0.2556 0.4529 0.1576 0.8574 0.9064 0.8270
TransH 0.3206 0.6029 0.1155 0.3724 0.4448 0.2980 0.2570 0.4564 0.1619 0.8618 0.9134 0.8328
TransR 0.3264 0.6090 0.1236 0.2446 0.4996 0.1651 0.2806 0.4974 0.1791 0.8431 0.8924 0.8137
TransD 0.2200 0.5414 0.0205 0.5657 0.8804 0.4160 0.1343 0.3105 0.0501 0.6803 0.7872 0.6189
Rescal 0.2772 0.4915 0.1404 0.7936 0.9023 0.7306 0.1709 0.3340 0.0952 0.7887 0.8491 0.7480
DistMult 0.2468 0.5087 0.0645 0.6008 0.6776 0.5479 0.1752 0.3531 0.0955 0.2779 0.5340 0.1381
ComplEx 0.2466 0.4944 0.0648 0.5676 0.6135 0.5367 0.1669 0.3307 0.0906 0.2380 0.3445 0.1765
Analogy 0.2521 0.5033 0.0688 0.5984 0.6386 0.5699 0.1776 0.3471 0.0996 0.2667 0.4247 0.1773
ConvE 0.4781 0.6533 0.3666 N/A 0.3190 0.5470 0.2129 N/A
m-TransH 0.0633 0.3006 0.0633 N/A 0.2060 0.4627 0.2060 N/A
RAE 0.0586 0.3064 0.0586 N/A 0.2153 0.4668 0.2153 N/A
NaLP 0.4084 0.5461 0.3311 0.4818 0.8516 0.3198 0.2209 0.3310 0.1650 0.6391 0.8215 0.5472
NaLP-Fix 0.4202 0.5564 0.3429 0.8200 0.9757 0.7197 0.2446 0.3585 0.1852 0.7469 0.8921 0.6665
NeuInfer 0.4233 0.5576 0.3503 0.4962 0.8737 0.3314 0.2378 0.3524 0.1781 0.6502 0.8395 0.5517
HypE 0.4527 0.5319 0.3805 0.8621 0.9033 0.8374 0.4236 0.5748 0.3019 0.8103 0.8577 0.7562
HyperMLN 0.4708 0.5698 0.4015 0.9017 0.9486 0.8752 0.4529 0.6033 0.3561 0.8764 0.9125 0.8358
GETD 0.4629 0.5536 0.3822 N/A 0.4383 0.5839 0.3391 N/A
HINGE 0.4711 0.5811 0.4079 0.9494 0.9971 0.9164 0.4548 0.6229 0.3649 0.9282 0.9769 0.8966
SIC 0.3378 0.4089 0.3044 0.6923 0.7281 0.6735 0.2842 0.3677 0.2695 0.6740 0.7136 0.6108
RAM 0.4529 0.5530 0.3728 0.8611 0.9522 0.8217 0.3309 0.5077 0.3190 0.8724 0.9231 0.7743
tNaLP 0.4648 0.5792 0.3801 0.8724 0.9831 0.8051 0.3207 0.4583 0.2690 0.8533 0.9571 0.7928
sHINGE 0.4780 0.5860 0.4251 0.9506 0.9977 0.9172 0.4582 0.6279 0.3718 0.9664 0.9961 0.9430

TABLE 3: Key/Value prediction performance on both WikiPeople and JF17K.

Method
WikiPeople JF17K

Value Prediction Key Prediction Value Prediction Key Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

m-TransH 0.1429 0.4258 0.1277 N/A 0.2695 0.5831 0.3374 N/A
RAE 0.1273 0.4025 0.1078 N/A 0.2737 0.5892 0.3406 N/A
NaLP 0.4297 0.5543 0.3508 0.5272 0.8903 0.3485 0.2976 0.4083 0.2415 0.6579 0.8525 0.5617
NaLP-Fix 0.4481 0.5629 0.3703 0.8315 0.9796 0.7318 0.3644 0.5017 0.3196 0.7815 0.9154 0.6930
NeuInfer 0.4538 0.5819 0.3705 0.6274 0.9306 0.4581 0.3785 0.5263 0.3272 0.7890 0.9017 0.7041
HypE 0.4613 0.5420 0.3865 0.8874 0.9151 0.8563 0.4726 0.6468 0.3637 0.8315 0.8809 0.7834
HyperMLN 0.4838 0.5921 0.4052 0.9225 0.9519 0.8972 0.4814 0.6328 0.3850 0.9088 0.9217 0.8406
GETD 0.4835 0.5719 0.3964 N/A 0.4813 0.6417 0.3866 N/A
HINGE 0.4928 0.6377 0.4192 0.9479 0.9850 0.9222 0.5490 0.6770 0.4715 0.9988 0.9996 0.9975
SIC 0.3527 0.4489 0.3156 0.7488 0.7903 0.7024 0.3091 0.3812 0.2854 0.7187 0.7620 0.6531
RAM 0.4921 0.6083 0.4037 0.9054 0.9627 0.8536 0.4012 0.6084 0.3699 0.9201 0.9572 0.8103
tNaLP 0.4879 0.6217 0.4082 0.9238 0.9825 0.9104 0.3923 0.5273 0.3147 0.9182 0.9824 0.8453
sHINGE 0.5494 0.6748 0.4903 0.9580 0.9910 0.9292 0.5578 0.6941 0.4818 0.9993 1.0000 0.9991

TABLE 4: The impact of schema on link prediction performance.

Fact Type Schema
WikiPeople JF17K

Head/Tail Prediction Relation Prediction Head/Tail Prediction Relation Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Triple w/o 0.4765 0.5874 0.3937 0.9493 0.9979 0.9145 0.2641 0.4965 0.1572 0.8723 0.9846 0.7965
w/ 0.4842 0.6287 0.4508 0.9906 0.9989 0.9573 0.2941 0.5271 0.1733 0.9264 0.9889 0.8856

Hyper w/o 0.3213 0.4888 0.2322 0.9432 1.0000 0.8876 0.5850 0.7172 0.5112 0.9841 0.9929 0.9785
w/ 0.3326 0.5049 0.2456 0.9503 1.0000 0.9014 0.6518 0.7933 0.5512 1.0000 1.0000 0.9969

TABLE 5: The impact of schema on key/value prediction performance.

Schema
WikiPeople JF17K

Value Prediction Key Prediction Value Prediction Key Prediction
MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

w/o 0.5352 0.6447 0.4800 0.9202 0.9720 0.8817 0.5346 0.6582 0.4613 0.9625 0.9731 0.9658
w/ 0.5814 0.7156 0.5090 0.9730 0.9970 0.9581 0.5578 0.6941 0.4818 0.9993 1.0000 0.9991

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

HINGE on average (6.8% and 0.4% improvements on value
prediction and key prediction, respectively).

5.4 The Impact of Schema on Link Prediction Perfor-
mance

In this experiment, we look into the impact of schema
through the breakdown of link prediction performance on
different categories of facts (triple/hyper-relational facts,
facts with/without schema information). Note that a fact
without schema information refers to the fact that contains
at least one entity without type, where we assign an ”un-
known” type to the entity.

Table 4 shows the results. We observe that facts with
schema information consistently achieve better performance
than facts without schema information, which indicates that
the schema information indeed helps the link prediction
in KGs. In addition, we also find that while the impact of
schema information on triple facts is higher than that on
hyper-relational facts on WikiPeople, we have a completely
opposite observation on JF17K, i.e., the impact of schema
information on triple facts is obviously lower than that on
hyper-relational facts. This can be explained by the dataset
statistics. Where JF17K dataset has a significant presence
of hyper-relational facts (42.2% and 73.6% in the training
and test datasets, respectively), WikiPeople contains much
fewer hyper-relational facts (2.6% in both the training and
test datasets).

5.5 The Impact of Schema on Key/Value Prediction Per-
formance

In this experiment, we study the influence of schema by
comparing the performance of sHINGE on the key-value
pairs without and with schema information.

Table 5 shows the results. We observe that key-value
pairs with schema information consistently outperform that
without schema information, showing a 16.8% improvement
on the value prediction task, and an 8.4% improvement on
the key prediction task on WikiPeople (7.3% and 6.1% on
JF17K, respectively). This further demonstrates the effective-
ness of schema information on key-value prediction.

5.6 Parameter Sensitivity Study

We study the impact of three key parameters in sHINGE,
i.e., the number of filters nf used in the CNNs, the embed-
ding dimension K and the number of types learnt per entity
s.

First, by fixing the embedding dimension K = 100 and
the number of types s = 1, we vary the number of filters
nf from 10 to 800, and plot its impact on the link prediction
performance for both datasets in Figure 3. We observe that
when increasing nf , the performance rises dramatically in
the beginning, and then flattens out when nf ≥ 400 in most
cases.

Second, by fixing the number of filters nf = 400 and the
number of types s = 1, we vary the embedding dimension
K from 5 to 200 on a log scale, and show its impact on the
link prediction tasks for both datasets in Figure 4. Similar
to the case of nf , we observe that when increasing K , the

performance increases rapidly in the beginning, and then
remains stable when K ≥ 100 in most cases.

Finally, by fixing the embedding dimension K = 100
and the number of filters nf = 400, we vary the number
of types learnt per entity s from 1 to 3, and present its
impact on the link prediction performance for both datasets
in Figure 5. We discover that learning from the top one type
for each entity achieves the best performance in general
on both datasets. Therefore, we set the number of filters
nf = 400, the embedding dimension K = 100, and the
number of types learnt per entity s = 1, in all previous
experiments.

6 CONCLUSION

Existing Knowledge Graph embedding techniques mostly
represent a KG as a set of triplets, and then learn en-
tity/relation embeddings from such triplets while pre-
serving the essential information for link prediction in
the KG. However, this triplet representation oversimplifies
the complex nature of the data stored in the KG, result-
ing in suboptimal models due to their ignorance of the
triplet structure. Moreover, most existing approaches do
not consider the hyper-relational schema information of
KG, which as we show in this paper is also critical to
resolving link prediction tasks. Against this background,
we proposed sHINGE, a schema-aware Hyper-relatIonal
kNowledge Graph Embedding model. It captures not only
the primary structural information of the KG encoded in
the triplets and their associated key-value pairs, but also the
schema information encoded by entity-typed triplets and
their associated entity-typed key-value pairs. Our extensive
evaluation shows the superiority of sHINGE on various
link prediction tasks over KGs using two real-world KG
datasets. In particular, compared to a sizeable collection
of 21 baselines, sHINGE consistently outperforms the best-
performing triple-based KG embedding method, hyper-
relational KG embedding method, and schema-aware KG
embedding method by 19.1%, 1.8%, and 12.9%, respectively.

In the future, we plan to further investigate the hyper-
relational KG embedding problem by considering high-
order relations over KGs using the combination of graph
neural networks and self-attention layers.

ACKNOWLEDGMENTS

This project has received funding from the University of
Macau (SRG2021-00002-IOTSC, SRG2021-00017-IOTSC) and
The Science and Technology Development Fund, Macau
SAR (0047/2022/A1, SKL-IOTSC(UM)-2021-2023), Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement 683253/GraphInt). This work was performed in
part at SICC which is supported by SKL-IOTSC, University
of Macau.

REFERENCES

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,
“Freebase: a collaboratively created graph database for structuring
human knowledge,” in ACM SIGMOD/PODS. ACM, 2008, pp.
1247–1250.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

0 200 400 600 800
nf

0.36
0.38
0.40
0.42
0.44
0.46
0.48

MRR
Hit@1

(a) Head/Tail Prediction
on WikiPeople.

0 200 400 600 800
nf

0.90
0.91
0.92
0.93
0.94
0.95

MRR
Hit@1

(b) Relation Prediction
on WikiPeople.

0 200 400 600 800
nf

0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46

MRR
Hit@1

(c) Head/Tail Prediction
on JF17K.

0 200 400 600 800
nf

0.92
0.93
0.94
0.95
0.96
0.97

MRR
Hit@1

(d) Relation Prediction
on JF17K.

Fig. 3: Impact of the number of filters nf .

0 50 100 150 200
K

0.1

0.2

0.3

0.4

0.5

MRR
Hit@1

(a) Head/Tail Prediction
on WikiPeople.

0 50 100 150 200
K

0.84
0.86
0.88
0.90
0.92
0.94
0.96

MRR
Hit@1

(b) Relation Prediction
on WikiPeople.

0 50 100 150 200
K

0.0

0.1

0.2

0.3

0.4

MRR
Hit@1

(c) Head/Tail Prediction
on JF17K.

0 50 100 150 200
K

0.65
0.70
0.75
0.80
0.85
0.90
0.95

MRR
Hit@1

(d) Relation Prediction
on JF17K.

Fig. 4: Impact of the embedding dimension K .

1 2 3
s

0.0

0.1

0.2

0.3

0.4

0.5
MRR
Hit@1

(a) Head/Tail Prediction
on WikiPeople.

1 2 3
s

0.92

0.93

0.94

0.95

MRR
Hit@1

(b) Relation Prediction
on WikiPeople.

1 2 3
s

0.0

0.1

0.2

0.3

0.4 MRR
Hit@1

(c) Head/Tail Prediction
on JF17K.

1 2 3
s

0.88

0.90

0.92

0.94

0.96 MRR
Hit@1

(d) Relation Prediction
on JF17K.

Fig. 5: Impact of the number of types learnt per entity s.

[2] Google, https://www.google.com/intl/bn/insidesearch/features
/search/knowledge.html, 2014.

[3] Wikidata, http://wikidata.org/, 2012.
[4] C. Xiong, R. Power, and J. Callan, “Explicit semantic ranking for

academic search via knowledge graph embedding,” in WWW,
2017, pp. 1271–1279.

[5] S. W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing
via staged query graph generation: Question answering with
knowledge base,” in ACL and IJCNLP, 2015, pp. 1321–1331.

[6] J. Graupmann, R. Schenkel, and G. Weikum, “The spheresearch
engine for unified ranked retrieval of heterogeneous xml and web
documents,” in VLDB. VLDB Endowment, 2005, pp. 529–540.

[7] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in KDD.
ACM, 2016, pp. 353–362.

[8] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proceedings of
the IEEE, vol. 104, no. 1, pp. 11–33, 2015.

[9] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin,
“Knowledge base completion via search-based question answer-
ing,” in WWW. ACM, 2014, pp. 515–526.

[10] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph
embedding: A survey of approaches and applications,” TKDE,
vol. 29, no. 12, pp. 2724–2743, 2017.

[11] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in NIPS, 2013, pp. 2787–2795.

[12] J. Wen, J. Li, Y. Mao, S. Chen, and R. Zhang, “On the representation

and embedding of knowledge bases beyond binary relations,” in
IJCAI. AAAI Press, 2016, pp. 1300–1307.

[13] S. Guan, X. Jin, Y. Wang, and X. Cheng, “Link prediction on n-ary
relational data,” in WWW. ACM, 2019, pp. 583–593.

[14] P. Rosso, D. Yang, and P. Cudré-Mauroux, “Beyond triplets: hyper-
relational knowledge graph embedding for link prediction,” in
WWW, 2020, pp. 1885–1896.

[15] D. Brickley, R. V. Guha, and B. McBride, “Rdf schema 1.1,” W3C
recommendation, vol. 25, pp. 2004–2014, 2014.

[16] R. Zhang, J. Li, J. Mei, and Y. Mao, “Scalable instance reconstruc-
tion in knowledge bases via relatedness affiliated embedding,” in
Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1185–
1194.

[17] Y. Liu, Q. Yao, and Y. Li, “Role-aware modeling for n-ary relational
knowledge bases,” in WWW, 2021, pp. 2660–2671.

[18] S. Guan, X. Jin, J. Guo, Y. Wang, and X. Cheng, “Neuinfer:
Knowledge inference on n-ary facts,” in ACL, 2020, pp. 6141–6151.

[19] P. Rosso, D. Yang, N. Ostapuk, and P. Cudré-Mauroux, “Reta:
A schema-aware, end-to-end solution for instance completion in
knowledge graphs,” in WWW, 2021, pp. 845–856.

[20] S. Guan, X. Jin, J. Guo, Y. none Wang, and X. Cheng, “Link pre-
diction on n-ary relational data based on relatedness evaluation,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[21] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive sur-
vey of graph embedding: Problems, techniques, and applications,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9,
pp. 1616–1637, 2018.

[22] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-paths

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

necessary? revisiting heterogeneous graph embeddings,” in CIKM,
2018, pp. 437–446.

[23] D. Yang, P. Rosso, B. Li, and P. Cudre-Mauroux, “Nodesketch:
Highly-efficient graph embeddings via recursive sketching,” in
KDD, 2019, pp. 1162–1172.

[24] P. Rosso, D. Yang, and P. Cudré-Mauroux, “Knowledge graph
embeddings,” in Encyclopedia of Big Data Technologies., 2019.

[25] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes.” in AAAI, vol. 14, 2014,
pp. 1112–1119.

[26] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion.” in AAAI,
vol. 15, 2015, pp. 2181–2187.

[27] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph
embedding via dynamic mapping matrix,” in ACL and IJCNLP,
vol. 1, 2015, pp. 687–696.

[28] T. Ebisu and R. Ichise, “Toruse: Knowledge graph embedding on
a lie group,” in AAAI, 2018.

[29] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for
collective learning on multi-relational data.” in ICML, vol. 11, 2011,
pp. 809–816.

[30] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in
ICLR, 2015.

[31] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in ICML, 2016,
pp. 2071–2080.

[32] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in NIPS,
2013, pp. 926–934.

[33] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convo-
lutional 2d knowledge graph embeddings,” in AAAI, 2017, pp.
1811–1818.

[34] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional
networks,” in ESWC. Springer, 2018, pp. 593–607.

[35] I. Balazevic, C. Allen, and T. M. Hospedales, “Hypernetwork
knowledge graph embeddings,” arXiv preprint arXiv:1808.07018,
2018.

[36] D. Q. Nguyen, T. Vu, T. D. Nguyen, D. Q. Nguyen, and D. Phung,
“A capsule network-based embedding model for knowledge
graph completion and search personalization,” arXiv preprint
arXiv:1808.04122, 2018.

[37] A. Garcia-Duran and M. Niepert, “Kblrn: End-to-end learning
of knowledge base representations with latent, relational, and
numerical features,” arXiv preprint arXiv:1709.04676, 2017.

[38] Y. Tay, L. A. Tuan, M. C. Phan, and S. C. Hui, “Multi-task
neural network for non-discrete attribute prediction in knowledge
graphs,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. ACM, 2017, pp. 1029–1038.

[39] A. Kristiadi, M. A. Khan, D. Lukovnikov, J. Lehmann, and A. Fis-
cher, “Incorporating literals into knowledge graph embeddings,”
arXiv preprint arXiv:1802.00934, 2018.

[40] Y. Liu, H. Li, A. Garcia-Duran, M. Niepert, D. Onoro-Rubio, and
D. S. Rosenblum, “Mmkg: Multi-modal knowledge graphs,” in
European Semantic Web Conference. Springer, 2019, pp. 459–474.

[41] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph and
text jointly embedding,” in EMNLP, 2014, pp. 1591–1601.

[42] H. Zhong, J. Zhang, Z. Wang, H. Wan, and Z. Chen, “Align-
ing knowledge and text embeddings by entity descriptions,” in
EMNLP, 2015, pp. 267–272.

[43] W. Fang, J. Zhang, D. Wang, Z. Chen, and M. Li, “Entity disam-
biguation by knowledge and text jointly embedding,” in CoNLL,
2016, pp. 260–269.

[44] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning
of the embedding of words and entities for named entity disam-
biguation,” in CoNLL, 2016, pp. 250–259.

[45] X. Han, Z. Liu, and M. Sun, “Neural knowledge acquisition via
mutual attention between knowledge graph and text,” in AAAI,
2018.

[46] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and
M. Gamon, “Representing text for joint embedding of text and
knowledge bases,” in EMNLP, 2015, pp. 1499–1509.

[47] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Learning
distributed representations of texts and entities from knowledge
base,” TACL, vol. 5, pp. 397–411, 2017.

[48] M. Yu and M. Dredze, “Improving lexical embeddings with se-
mantic knowledge,” in ACL, vol. 2, 2014, pp. 545–550.

[49] J. Cheng, Z. Wang, J.-R. Wen, J. Yan, and Z. Chen, “Contextual text
understanding in distributional semantic space,” in CIKM. ACM,
2015, pp. 133–142.

[50] P. Rosso, D. Yang, and P. Cudre-Mauroux, “Revisiting text and
knowledge graph joint embeddings: The amount of shared in-
formation matters!” in Proceedings of the 2018 IEEE International
Conference on Big Data (Big Data), 2019.

[51] B. Fatemi, P. Taslakian, D. Vazquez, and D. Poole, “Knowledge
hypergraphs: prediction beyond binary relations,” in Proceedings
of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2020, pp. 2191–2197.

[52] Z. Chen, X. Wang, C. Wang, and J. Li, “Explainable link prediction
in knowledge hypergraphs,” in Proceedings of the 31st ACM inter-
national conference on information & knowledge management, 2022, pp.
262–271.

[53] S. Yan, Z. Zhang, X. Sun, G. Xu, S. Li, Q. Liu, N. Liu, and S. Wang,
“Polygone: Modeling n-ary relational data as gyro-polygons in
hyperbolic space,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 4, 2022, pp. 4308–4317.

[54] Y. Liu, Q. Yao, and Y. Li, “Generalizing tensor decomposition for n-
ary relational knowledge bases,” in Proceedings of the web conference
2020, 2020, pp. 1104–1114.

[55] S. Di, Q. Yao, and L. Chen, “Searching to sparsify tensor decompo-
sition for n-ary relational data,” in Proceedings of the Web Conference
2021, 2021, pp. 4043–4054.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[57] M. Galkin, P. Trivedi, G. Maheshwari, R. Usbeck, and J. Lehmann,
“Message passing for hyper-relational knowledge graphs,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 7346–7359.

[58] Q. Wang, H. Wang, Y. Lyu, and Y. Zhu, “Link prediction on n-
ary relational facts: A graph-based approach,” in Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, 2021,
pp. 396–407.

[59] D. Yu and Y. Yang, “Improving hyper-relational knowledge graph
completion,” arXiv preprint arXiv:2104.08167, 2021.

[60] H. Shomer, W. Jin, J. Li, Y. Ma, and J. Tang, “Learning repre-
sentations for hyper-relational knowledge graphs,” arXiv preprint
arXiv:2208.14322, 2022.

[61] K. Wiharja, J. Z. Pan, M. J. Kollingbaum, and Y. Deng, “Schema
aware iterative knowledge graph completion,” Journal of Web
Semantics, vol. 65, p. 100616, 2020.

[62] Y. Xue, J. Jin, A. Song, Y. Zhang, Y. Liu, and K. Wang, “Relation-
based multi-type aware knowledge graph embedding,” Neurocom-
puting, vol. 456, pp. 11–22, 2021.

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012,
pp. 1097–1105.

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv
preprint arXiv:1502.03167, 2015.

[66] Z. Zhang, J. Cai, Y. Zhang, and J. Wang, “Learning hierarchy-aware
knowledge graph embeddings for link prediction,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 34, no. 03, 2020,
pp. 3065–3072.

[67] Z. Cui, P. Kapanipathi, K. Talamadupula, T. Gao, and Q. Ji,
“Type-augmented relation prediction in knowledge graphs,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 8, 2021, pp. 7151–7159.

[68] H. Luo, E. Haihong, L. Tan, G. Zhou, T. Yao, and K. Wan, “Dhge:
Dual-view hyper-relational knowledge graph embedding for link
prediction and entity typing,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 5, 2023, pp. 6467–6474.

[69] J. Zhuo, Q. Zhu, Y. Yue, Y. Zhao, and W. Han, “A neighborhood-
attention fine-grained entity typing for knowledge graph comple-
tion,” in Proceedings of the fifteenth ACM international conference on
web search and data mining, 2022, pp. 1525–1533.

[70] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in NIPS, 2013, pp. 3111–3119.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[71] G. Niu, B. Li, Y. Zhang, and S. Pu, “Cake: A scalable
commonsense-aware framework for multi-view knowledge graph
completion,” in Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), 2022, pp.
2867–2877.

[72] H. Liu, Y. Wu, and Y. Yang, “Analogical inference for multi-
relational embeddings,” in ICML, 2017, pp. 2168–2178.

[73] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

Yuhuan Lu received the B.Eng. and M.S. de-
grees in transportation engineering from Sun
Yat-Sen University, Guangzhou, China, in 2017
and 2020, respectively. He is currently a Ph.D.
student with the State Key Laboratory of Inter-
net of Things for Smart City and Department of
Computer and Information Science, University of
Macau, Macao, and also a research assistant
with the School of Intelligent Systems Engineer-
ing, Sun Yat-Sen University, Guangzhou, China.
His research interests lie in Graph Embedding,

Urban Computing and Intelligent Transportation Systems.

Dingqi Yang is an Associate Professor with
the State Key Laboratory of Internet of Things
for Smart City and Department of Computer
and Information Science, University of Macau.
He received his Ph.D. degree in Computer Sci-
ence from Pierre and Marie Curie University
and Institut Mines-TELECOM/TELECOM Sud-
Paris in France, where he won both the CNRS
SAMOVAR Doctorate Award and the Press Men-
tion in 2015. Before joining the University of
Macau, he worked as a senior researcher at the

University of Fribourg in Switzerland. His research interests include big
data analytics, ubiquitous computing, and smart city.

Pengyang Wang is an Assistant Professor in the
State Key Lab of Smart Cities and Internet-of-
Things at the University of Macau. He obtained
his Ph.D. in Computer Science from the Uni-
versity of Central Florida. His research interests
are in data mining, machine learning and big
data analytics. Pengyang has received “Global
Top 100 Chinese Rising Stars in Artificial In-
telligence”, one Best Student Paper Runner-up
award of SIGKDD 2018, and one Best Paper
Runner-up award of SIGSPATIAL 2020. His re-

search work has been featured by Synced and UCF Today, and also
highlighted by the Natural Science Foundation (NSF) of the U.S.

Paolo Rosso received his Ph.D. degree in Com-
puter Science from the University of Fribourg
in Switzerland where he worked on Knowledge
Graph embeddings. Before starting his Ph.D.,
he did the Erasmus traineeship at High Per-
formance Computing Center in Stuttgart (Ger-
many) where he developed a platform to bench-
mark different architectures for High Perfor-
mance Computing. His research interests are
Semantic Web and Machine Learning.

Philippe Cudre-Mauroux is a Full Professor
and the director of the eXascale Infolab at the
University of Fribourg in Switzerland. He re-
ceived his Ph.D. from the Swiss Federal Insti-
tute of Technology EPFL, where he won both
the Doctorate Award and the EPFL Press Men-
tion. Before joining the University of Fribourg
he worked on information management infras-
tructures for IBM Watson Research, Microsoft
Research Asia, and MIT. His research interests
are in next-generation, Big Data management

infrastructures for non-relational data. Webpage: http://exascale.info/phil

