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Abstract
During the past few years, with the advent of large-scale pre-
trained language models (PLMs), there has been a significant
advancement in cross-domain text classification with limited
labeled samples. However, most existing approaches still face
the problem of excessive computation overhead. While some
non-pretrained language models can reduce the computation
overhead, the performance could sharply drop off. To resolve
few-shot learning problems on resource-limited devices with
satisfactory performance, we propose a prototype rectifica-
tion framework, ProtoRectifier, based on pre-trained model
distillation and episodic meta-learning strategy. Specifically,
a representation refactor based on DistilBERT is developed
to mine text semantics. Meanwhile, a novel prototype recti-
fication approach (i.e., Mean Shift Rectification) is put for-
ward by making full use of the pseudo-labeled query sam-
ples, so that the prototype of each category can be updated
during the meta-training phase without introducing additional
time overhead. Experiments on multiple real-world datasets
demonstrate that ProtoRectifier outperforms the state-of-the-
art baselines, not only achieving high cross-domain classifi-
cation accuracy but also reducing the computation overhead
significantly.

1 Introduction
The analysis of textual content is of critical importance in
various research areas, such as social media analysis (Jiang,
Ren, and Ferrara 2023), recommendation systems (Cao et al.
2023), semantic Web, etc. However, in real-world scenarios,
the scarcity of clean corpora and the expensive cost of hu-
man annotation often limits the number of labeled samples
for supervised learning tasks, e.g. text classification.

The recent development of Natural Language Process-
ing (NLP) techniques has made significant advancements in
the analysis of textual content with limited labels. For ex-
ample, pre-trained models achieve satisfactory performance
on tasks where training and testing samples belong to the
same domain. However, such models have the shortcom-
ing of limited cross-domain transferability. Thereby, more
and more attention is being paid on fusing pre-training and
domain generalization for the development of cross-domain
text classification models.

One of the most remarkable Pretrained Language Models
(PLMs) is the BERT-based approach (Devlin et al. 2019),
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which can generate high-quality textual representations by
learning word embeddings on large-scale corpora. However,
the encoder turns out to be heavyweight with the improve-
ment of performance. Although the use of non-pretrained
language models offers a potential solution, the model’s per-
formance usually decreases significantly due to the absence
of sufficient feature extraction. Similarly, while distillation
methods provide another viable solution, the model’s gen-
eralization ability decreases as there are fewer parameters.
Therefore, it is necessary to build pre-trained models with
both high performance and low computation overhead for
cross-domain text classification, which is a meaningful yet
lesser-attended issue. To address this issue, we choose to
develop a lightweight pre-trained model with good domain
generalization ability.

Currently, there are mainly three different domain gen-
eralization approaches (Wang et al. 2022), which are data
augmentation (Wang et al. 2020), representation learn-
ing (Ganin and Lempitsky 2015; Li, Liu, and Bilen 2021)
and meta-learning (Finn, Abbeel, and Levine 2017). The
data augmentation approach is widely used to generate ex-
tra training samples, especially in the field of computer vi-
sion (CV), based on techniques such as panning, cropping,
flipping, and adding noises to images. However, due to the
difference between images and text, these techniques are
not suitable for the augmentation of textual data. The rep-
resentation learning approach (Ganin and Lempitsky 2015;
Li, Liu, and Bilen 2021) studies domain-agnostic represen-
tation from the perspective of both mathematical modeling
and machine learning. A challenge is that data sampling
could become inefficient or unreliable during the training
process. Compared with the above two approaches, meta-
learning (Finn, Abbeel, and Levine 2017) (i.e., meta-transfer
learning under cross-domain conditions) achieves cross-
domain parameter adaptation and fine-tuning by exploring
the relationship between the query and support sets. Specif-
ically, episodic sampling is adopted in the meta-training
framework, which ensures the model’s cross-domain trans-
ferability.

While meta-learning helps to fine-tune the feature ex-
tractor for independent meta-tasks, the classification accu-
racy decreases as the number of domains increases. A pos-
sible solution is contrastive learning (Chen et al. 2022),
which has received much attention recently. However, such



sophisticated models consume a lot of computation re-
sources. Another possible approach is adopting prototype
networks (Snell, Swersky, and Zemel 2017; Ma et al. 2020)
in the meta-learning framework. It has been proved that pro-
totype learning is able to produce satisfactory outcomes with
a good feature extractor (Dopierre, Gravier, and Logerais
2021a), and does not lead to significant computation over-
head. Specifically, it first maps data samples into an embed-
ding space, and then adopts the center of each class as a
prototype for direct classification. For example, the Hyper-
Proto model (Ding et al. 2022) represents different classes
geometrically using tensor fields, where the class informa-
tion is represented by hyperspheres with dynamic sizes.
Furthermore, to prevent from overfitting, the ProtAugment
model (Dopierre, Gravier, and Logerais 2021b) introduces
unsupervised cross-entropy loss and unlabelled instances.
Nevertheless, given a limited number of labeled samples, it
is a challenge to build precise prototypes, which limits the
model’s performance.

To address the above-mentioned challenge, we propose to
design a pre-trained prototype rectification framework, aim-
ing to enable efficient text classification with both high ac-
curacy and low overhead. On one hand, while most exist-
ing studies (Mueller et al. 2022; Luo et al. 2021) focus on
improving the classification accuracy of pre-trained models,
less attention has been paid to the efficiency of model train-
ing. For example, by performing a secondary pre-training
on tagged phrases from different fields, the Label Seman-
tic Awareness Pre-training (LSAP) model (Mueller et al.
2022) integrates label semantics into the pre-trained gener-
ative encoder and constructs sentence-label pairs from unla-
beled samples. The Label-semantic augmented meta-learner
(LaSAML) framework (Luo et al. 2021) demonstrates that
label information can be used to extract more discrimina-
tive feature representations with pre-trained language mod-
els (e.g., BERT). Nevertheless, considering that large-scale
re-training from scratch will lead to a huge computation
overhead, we choose to design a representation refactor
based on DistilBERT (i.e., RRED) to speed up the train-
ing process. We optimize the text representation by further
extracting domain-specific features.

On the other hand, considering that none of the existing
studies has made full use of the information of query sam-
ples for few-shot text classification, we put forward mean
shift rectification (i.e. MSR) to expand the corresponding
support set by leveraging query samples. Specifically, since
query samples are from the task domain, we can explore
them to construct more suitable prototypes by updating the
key pivots of each category in the meta-training phase. As a
result, more appropriate prototypes can be obtained, based
on which the model’s classification accuracy can be guaran-
teed.

To sum up, we propose to facilitate efficient cross-domain
text classification with limited labeled samples from two
perspectives. First, we design the RRED module to lower
the computation overhead. Second, we use the MSR module
to obtain more representative prototypes, based on which the
classification accuracy can be improved. In such a way, we
achieve a satisfactory balance between the model’s gener-

alization ability and computation overhead, which has been
overlooked in previous studies. The main contributions of
this work are summarized as follows:

• We propose a novel prototype rectification frame-
work (named ProtoRectifier) by combining meta-transfer
learning based on pseudo-label augmentation and pre-
training distilization for efficient text classification with
limited labeled samples. ProtoRectifier achieves a satis-
factory balance between the model’s generalization abil-
ity and computation overhead.

• We design a representation refactor based on Distil-
BERT to optimize the initial representation by extract-
ing domain-specific features. Moreover, we put forward
mean shift rectification, based on which the query set
samples can be explored to rectify pivot points generated
with support set samples. As a result, more appropriate
prototypes are obtained.

• We conduct experiments on multiple real-world datasets.
Results show that the proposed model outperforms the
state-of-the-art baselines, achieving both high classifi-
cation accuracy and low computation overhead. To the
best of our knowledge, this is the first work that system-
atically addresses the accuracy-efficiency balance issue
of cross-domain text classification with limited labeled
samples.

The rest of this paper is organized as follows. We present
the related work in Section 2, followed by the details of the
proposed prototype rectification framework in Section 3. We
describe the experimental results in Section 4, and then con-
clude the paper in Section 5.

2 Related Work
2.1 Few-shot Learning
When solving few-shot problems, which are problems where
a limited number of labeled samples are available, the con-
struction of both training sets and test sets differs from tra-
ditional machine learning methods. Vinyals et al. (Vinyals
et al. 2016) proposed an episodic strategy to simulate a real
few-shot environment, thus improving the model’s general-
ization ability by sampling the support set and the query set
as meta-tasks. Specifically, the meta-learning paradigm ob-
tains the ability of ”learning to learn” (Hou et al. 2022) by
generalizing the domain-agnostic features from source do-
mains and fine-tuning models with limited labeled samples
of target domains. Therefore, in this case, classes for valida-
tion and testing are invisible during the training process. In
short, the training set Dtrain is composed of a large number
of domains with limited labeled samples, whereas the test
set Dtest only contains a few shot of other domains. Con-
cretely, sample labels in Dtrain and Dtest do not intersect
with each other.

Currently, meta-learning has been widely employed to
solve the few-shot problem and existing studies can be
classified into three categories. The first line of study is
optimization-based meta-learning (Finn, Abbeel, and Levine
2017), which considers the internal task (i.e., the adaptive



process) as an optimization problem and focuses on col-
lecting the meta-knowledge necessary for performance im-
provement. While this line of research is effective, it suf-
fers from the problem of memory overfitting (Rajendran,
Irpan, and Jang 2020). The second line of study is model-
based meta-learning (Munkhdalai and Yu 2017; Santoro
et al. 2016), in which a feed-forward neural network is di-
rectly built by the meta-learning algorithm. It is inferior
to optimization-based meta-learning due to the enormous
instance distance. However, its performance is poor when
dealing with supervised tasks. The third category is met-
ric learning, which seeks to learn a metric space. The la-
bel of a testing sample can be predicted by simply assessing
its similarity to training samples. Specifically, metric-based
meta-learning techniques have demonstrated promising re-
sults, avoiding over-fitting when the class space changes.

2.2 Transfer Metric Learning
Metric learning is the process of creating a measurement
space by machine learning and assessing the similarity of
samples based on metrics such as Euclidean distance, cosine
distance, etc. Based on the calculated similarity, an unla-
beled sample can be predicted to belong to the nearest class.
Metric-based transfer learning intends to improve the target
metric by transferring metric information from the source
domain. Thereby, a key issue is the optimization of the met-
ric network.

Existing studies mainly focus on improving the metric
network by introducing additional neural networks or ex-
ternal knowledge, such as siamese networks (Koch et al.
2015), matching networks (Vinyals et al. 2016), relational
networks (Hu et al. 2018), induction networks (Geng et al.
2019), et al. However, most of these models consume a
lot of computation resources. By contrast, prototypical net-
works (Snell, Swersky, and Zemel 2017) is a straightfor-
ward approach suitable for few-shot learning. To implement
text classification, Fritzler et al. (Fritzler, Logacheva, and
Kretov 2019) employed the prototypical network for named
entity recognition by learning intermediate representations
of words and aggregating them into named entity classes.
Additionally, to mitigate the impact of imbalanced sam-
ple classes, Universal Prototype (Wu et al. 2021) investi-
gated how object features could be enhanced using inherent
properties that are shared across domains. PromptDA (Chen
and Shu 2023) proposed a data augmentation method based
on rich tag semantic information, which explored the im-
portance of label semantics in the prompt-based learning
paradigm. Even though these studies have provided a useful
supplement to prototype learning, there still exists the mis-
classification issue when label semantics are similar to each
other. In other words, it is not suitable enough to generate
prototypes by simply averaging support vectors.

Unlike previous studies, we aim to minimize deviations
from the expected prototype by making full use of the crucial
data in query sets. Without the need for extra data sets, we
alleviate the representation bias caused by sample scarcity.
Based on knowledge distillation pre-training, the proposed
framework leverages the query set and rectifies the proto-
type by mean shifting, as illustrated in Fig 3. Pseudo-labeled

query samples enrich the class representation, which fur-
ther enhance the classification performance. Specifically, the
episodic iterative procedure increases the model’s reliabil-
ity without incurring additional computation overhead, and
mitigates the accuracy loss due to the proposed lightweight
pre-trained distillation encoder.

3 Methodology
In this section, we first describe the few-shot learning sce-
nario and the related terminology. Then, we present the over-
all design of the proposed framework, i.e., ProtoRectifier.
Finally, we provide a detailed explanation of the efficient
encoder RRED and the base-learner MSR.

3.1 Problem Definition
Few-shot learning, which is also referred to as N -way K-
shot problem, generates meta-tasks to stimulate the sample
scarcity situation. In addition to training the model on a cer-
tain target task, meta-learning-based techniques learn meta-
knowledge from different tasks to modify model parameters.

Typically, a data set is divided into three parts, includ-
ing the training set Dtrain, validation set Dval, and test set
Dtest. Before each training iteration, N labeled domains
from the training set are randomly selected. Then, for each
class, K samples are selected as the support set, and M
samples are selected as the query set. Each episode is com-
posed of a support set S = {(xi,yi)}N×K

i=0 and a query set
Q = {(xj ,yj)}N×M

j=1 , where yi ∈ {1, · · · , N}. The valida-
tion set and test set tasks are constructed similarly. It should
be noted that the label spaces of these three sets do not in-
tersect with each other, i.e. Dtrain

⋂
Dval

⋂
Dtest = ∅. In

the training stage, the classifier is trained on different meta-
tasks with the loss calculated over the corresponding query
set. In the testing stage, the episodic mechanism is utilized to
adapt to the test set more rapidly. Under the setting of meta-
learning, the model can generalize from labeled classes to
unseen classes.

3.2 Framework Overview
This section introduces the general architecture and key
components of the proposed framework, i.e., the RRED
representation module and the MSR prototype rectification
module, as shown in Fig. 1. The overall design objective
of ProtoRectifier is to maintain the model’s generalization
ability and make it more lightweight. Unlike previous stud-
ies that use large-scale PLMs directly for better encoding
performance, we focus on applying an improved prototype
learning method to a more lightweight pre-trained encoder,
so as to achieve comparable performance as heavy models.

For each episode, the input is encoded by the RRED
module. A knowledge distillation-based BERT model is
used to extract domain-agnostic features of each sample.
Representation vectors are then fed into a recurrent neu-
ral network to obtain domain-specific features. Specifically,
there exists a gap between original prototypes and target pro-
totypes due to data scarcity. Therefore, we introduce a bias-
reducing MSR module to rectify the class average proto-
type. Since the feature space of the query sample is the same



Figure 1: Framework of the prototype rectification model based on meta-learning. Function sim(·) denotes the similarity of the
original prototype and the query samples, and “ + ” surrounded by a circle means summation with a weighting factor.

as the corresponding support samples, it helps to construct
more suitable prototypes. Adjusting the prototype through
the augmented set can further improve the model’s general-
ization ability.

Formally, let S ′ represent the augmented sample set and
S represent the support set, the extended set can be denoted
as Ŝ = S

⋃
S ′. Then, patterns are learned based on the ex-

tended support set Ŝ, which enables the classifier to make
predictions on the query set Q.

3.3 Encoder Optimization Module
For this part, we begin by summarizing the encoder module
from two aspects. The domain-agnostic feature extraction
part learns task-agnostic representations to capture linguis-
tic information. The domain-specific feature extraction part
realizes initial representation optimization through a deep
feature extraction layer. The key idea of our encoder mod-
ule is to further extract the pre-trained student model, so
as to preserve the reasoning effect of the teacher model as
much as possible. Specifically, the gaps between different
domains will become more evident after encoding through
the RRED module, laying a foundation for rectified pro-
totype learning in the MSR module. Fig 2 illustrates an
overview of the RRED encoder.

Domain-agnostic feature extraction: Model distilla-
tion, i.e., teacher-student learning, is a technique for con-
densing large models. The key idea is to train small models
(i.e., student models) to reproduce the output of large mod-
els given the same input. DistillBERT (Sanh et al. 2019)
is a pre-trained model produced by applying the knowl-
edge distillation method to the BERT model. It reduces the
number of layers, and removes the token type embedding
and next-sentence prediction tasks, while retaining the other
mechanisms of BERT. It inserts a unique token [CLS] be-
fore the original text, and the encoder layer receives the
token sequence as input and outputs the representation of

Figure 2: An illustration of the meta-task encoding pro-
cess. w refers to a single word, v represents the word vec-
tor. v[CLS] denotes the sentence representation generated by
the distilled pre-trained language model. The encoder output
h[CLS] is a 768-dimensional vector.

token sequences. In this study, the text sentence is repre-
sented by the [CLS] token vector. Specifically, let w =
{w[CLS], w1, · · · , wℓ} be the original word sequence, the
fundamental encoder layer outputs the symbolic represen-
tation v = {v[CLS], v1, · · · , vℓ}, where ℓ is the length of the
notation sequence. The individual instances of the support
set and query set are encoded separately.

Domain-specific feature extraction: Following the ex-
traction of domain-agnostic features, we introduce BGRU
to further mine domain-specific features. The bidirectional



gated recurrent unit provides domain-specific information to
enhance the representative ability of cross-domain features.
Since the process of classification is in a task-specific metric
space, such configuration generates strong linkages between
samples of the same type, providing a positive impact on
subsequent prototype generation.

The module is composed of BGRU and a full connection
layer. We set up the BGRU network with three hidden layers,
where the hidden states are represented by the forward hid-
den unit

−−→
ht−1 and the reverse hidden unit

←−−
ht−1 as follows.

Specifically, αr, βr, γr, U and ϵ represent weight parame-
ters, g1(·) and g2(·) denote activation function, and hout de-
notes the output of BGRU. The hidden size and dropout rate
are set to 130 and 0.2, respectively.

−−→
h
(r)
t = g1(

−→
αr
−−→
hr−1
t +

−→
βr−−→hr

t−1) +
−→
γr

←−−
h
(r)
t = g1(

←−
αr
←−−
hr−1
t +

←−
βr←−−hr

t+1) +
←−
γr

hout = g2(U

[−−→
h
(r)
t ;
←−−
h
(r)
t

]
+ ϵ)

(1)

We then obtain a 768-dimensional vector h[CLS] through
a linear layer. In summary, the base-learner encoder is for-
malized as Eq. 2, where θ denotes the network parameter.

h[CLS] = RRED[CLS] (w; θ) (2)

3.4 Mean Shift Rectification
In this section, we present the details of the MSR mod-
ule, which is the kernel of the proposed framework. We
first introduce the metric-based prototypical network, and
then describe the proposed prototype mean shift rectification
method.

Euclidean distance based prototype generation: In-
ductive bias is used in prototypical networks (Snell, Swer-
sky, and Zemel 2017) to map each sample onto a hyper-
space. The fundamental concept is to create a prototypical
vector representing each class. In particular, a prototype is
usually created by averaging the embedding representations
of all data samples of a certain class. We define P c as the
obtained prototype, and let xc

s and ycs represent the original
support set and label of domain c, respectively. We calculate
the proto-vector with Eq. 3, where Sc is a subset correspond-
ing to domain c of support set S.

pc =
1

|Sc|
∑

(xc
s,y

c
s)∈Sc

RREDθ (x
c
s) (3)

To simply the above formula, we define fθ(·) =
RREDθ (·), which represents the optimized feature extrac-
tor. Based on the obtained class prototypes, the distribution
P of predicted labels for the query sample {xq, yq} ∈ Q
can be represented as the softmax values of the distances be-
tween the input vector and class centers. Given a sample xq ,
its probability of belonging to class c is computed as Eq.4,
where dist(·, ·) denotes the similarity function, which can
be Euclidean distance or cosine distance, etc.

P(yq = c|xq,S; θ) =
exp(−dist(fθ(xq),pc))∑N
z=1 exp(−dist(fθ(xq),pz)

(4)

Figure 3: An illustration of prototype rectification for 3-way
5-shot task. The large solid circles that denote support pro-
totypes will be rectified by augmented query prototypes.

Mean shift rectification for prototype: For N-way K-
shot learning, as illustrated in Fig. 3, there are K samples
for each class, i.e., available samples are much fewer than
expected. Thus, the generated prototype tends to be biased
due to data scarcity. To address this issue, we propose MSR
to reduce bias using query set samples.

Since there exists distributional variance between the sup-
port set and the query set, we introduce a shifting term ξ
to rectify such cross-domain bias. The shifting term ξ guar-
antees the lower bound when using query set data. Follow-
ing the theoretical analysis of Liu et al. (Liu, Song, and Qin
2020), we propose to reduce the distributional deviation by
computing ξ as Eq. 5, where S and Q represent the support
set and the query set of N domains. By adding the shift term
ξ to the query set, it will shift towards the support set and
the intra-class bias can be reduced accordingly.

ξ =
1

|S|

|S|∑
m=1

fθ(x
m
s )− 1

|Q|

|Q|∑
n=1

fθ(x
n
q ). (5)

First, we compute the original support prototype for each
class according to Eq. 3. Then, the distance between each
query sample and the support prototype pivot can be calcu-
lated. To highlight the sample similarity, we adopt an expo-
nential function for re-scaling based on a relaxation factor
ζ, which is defined by the slack of the metric. Consequently,
the similarity is calculated as follows.

sim(pi, qj) = exp(ζ · dist(pi, qj)), (6)

where sim(·) denotes the similarity between the jth query
sample qj and the ith class support prototype pi. The sim-
ilarity of each query sample is then normalized by softmax
to obtain a score, the highest of which is considered as the
pseudo-label ŷq as Eq. 7.

ŷq = argmax
sim(pc, qj)∑N
k sim(pk, qj)

(7)



Once pseudo-labels for all query samples are obtained,
we can generate an expanded set S ′, which effectively in-
creases the confidence level of the prototype. With such an
“enriched” data set, the rectified prototype can be calculated
accordingly.

It should be noted that the contribution of samples in the
expanded set is different from samples in the original sup-
port set. Specifically, samples closer to the center of the
class should receive more attention. We thus calculate the
weighted summation of query samples to generate query set
correction prototypes p′, and obtain the rectified prototype
p′′ by refactoring the prototype p generated from the sup-
port set to the expected class center. The corrected prototype
of the query set is defined as follows.

p′
c =

Z∑
i=1

scoreci · qc
i , (8)

where scoreci represents the weight of each augmented sam-
ple i with pseudo-label c and p′ denotes the query set cor-
rection prototype. Z is the number of augmented query sam-
ples in each class. The similarity weight score is computed
as Eq. 9.

Scoreci =
sim(qc

i ,pc)∑C
k sim(qk

i ,pc)
, (9)

where pc is the original prototype calculated by Eq. 3.
Specifically, the weighted query prototype is designed based
on the consideration that samples with high similarity to the
base class center should play a more significant role in pro-
totype rectification.

Since some pseudo-labeled samples are likely to be mis-
classified, a simple average operation with the same weights
may lead to a larger bias. Therefore, we adjust the proto-
type weights of support and query sets by means of applying
the relaxation factor λ. Specifically, after shifting the orig-
inal mean value prototype p of the support set towards the
augmented prototype p′, the rectified prototype p′′ can be
obtained as Eq. 10.

p′′ = λp+ (1− λ)p′ (10)

To sum up, the MSR module updates the prototype iter-
atively during the meta-task training process by making full
use of query samples, without introducing additional com-
putation overhead.

3.5 The ProtoRectifier Strategy
To further improve the performance of the modified proto-
typical network, we put forward an end-to-end meta-training
strategy in this section. The basic idea is to extract task-
agnostic meta-knowledge about the rectified prototype from
base classes and then apply the knowledge to new classes.
Such a training strategy makes it possible to generate infor-
mation for cross-domain downstream tasks, thus enhancing
the efficiency of domain adaptation. The learning process of
ProtoRectifier is summarized in Algorithm 1.

As shown in Algorithm 1, we first sample the N -way K-
shot meta-tasks from the training and validation process to
generate the support set S and query set Q from Dtrain and

Algorithm 1: Learning Process of ProtoRectifier.
Input: Source domain training set Dtrain; other domains
validation set Dval; hyper-parameters: Ψ.
Output: The updated network including encoder parameters
θ and meta-learner parameter ϕ.

1: Initialize θ ← θ0, ϕ← ϕ0;
2: for all iteration episode do
3: Sampling N domains from Dtrain;
4: for i = 1 to N do
5: Si,Qi ← For each class u in Dtrain, sample k

items as support set and m items as query set ran-
domly;

6: end for
7: Encode S,Q with RRED module;
8: xq ← Add({xq, ξ); pi ← Average({xi

s,y
i
s})

9: S ′ ← ∅ // Initialize the augmented set
10: for qj = {xj

q,y
j
q} in Q do

11: S ′

i ← argmax(qj , {p1, · · · ,pN})
12: end for
13: p

′

i =
∑S

′
i

k
sim(qk,pi)∑S
′
i

t sim(qt,pi)

· qk

14: p
′′

i = λpi + (1− λ)p
′

i
15: Update θ, ϕ← ProtoRectifier(Dval,Ψ, θ, ϕ);
16: end for

Dval (Lines 3-6). Then, the generated meta-task is encoded
by the RRED module (Line 7). Next, we make label pre-
dictions on samples in the rectified query set and add them to
the corresponding support set S to generate the augmented
support set Ŝ = S

⋃
S ′ (Lines 8-12). The weighted incre-

mental correction prototype is calculated using the extended
support set S′ according to Eq. 8 (Line 13). Finally, we rec-
tify the prototype based on Eq. 10 (Lines 14-15). In such a
way, we effectively utilize the data in the query set to correct
the prototypes.

4 Experiment
4.1 Experimental Setup
Dataset Description To demonstrate the effectiveness of
ProtoRectifier, we evaluate its performance on three public
datasets in the few-shot scenario. Table 2 summarises the
statistics of the used datasets.

ARSC* (Blitzer, Dredze, and Pereira 2007): ARSC is
a multi-domain sentiment classification dataset, which con-
tains Amazon product reviews for 23 products. Each do-
main contains three classification tasks with different rating
thresholds. In this paper, we select 12 (4×3) tasks from four
domains (including books, DVDs, electronics, and kitchen
housewares) as test tasks and use the remaining 57 tasks as
the training set.

HuffPost (Misra 2018; Misra and Grover 2021): It
is a dataset containing HuffPost news topics. For a fair
comparison, we allocate 27, 6, and 8 tasks of differ-
ent topics to training, validation, and test sets, respec-

*https://github.com/Gorov/DiverseFewShot Amazon



Table 1: Comparison of FLOPs on the 20news dataset.

20News Attention-BiLSTM+Meta-Learner BERT+Meta-Learner LaSAML ProtoRectifier
Other Metric Leaner Induction Other Metric Leaner Induction

1-shot 2112MiB 5596MiB 5198MiB 7394MiB 18534MiB 3512MiB
5-shot 3354MiB 9418MiB 6174MiB 8066MiB 18612MiB 3808MiB

Table 2: The detailed dataset statistics.

Datasets sent num train/val/test avg sent len

ARSC 206,913 19/19/4 98
HuffPost 36,900 27/6/8 11
20News 18,820 9/5/6 340

tively. Specifically, there are eight selected test domains,
which are topics of ”HEALTHY LIVING”, ”DIVORCE”,
”WORLDPOST”, ”STYLE”, ”MONEY”, ”ENVIRON-
MENT”, ”CULTURE&ARTS” and ”EDUCATION”.

20News (Lang 1995): It contains newsgroup documents
of 20 different topics, such as politics, sports, science, etc.
Some of the topics are completely unrelated and there-
fore suitable for the evaluation of cross-domain text anal-
ysis. The topic selected for test are ”rec.sport.baseball”,
”misc.forsale”, ”sci.space”, ”comp.sys.ibm.pc.hardware”,
”soc.religion.christian” and ”talk.politics.mideast”.

Baselines To evaluate ProtoRectifier, a set of baseline
models are explored for performance comparison, which can
be divided into three categories. First, for all three datasets,
four metric learning methods (i.e., matching network, pro-
totype network, relation network, and induction network)
are selected to construct classification models with both the
non-pretrained language model (i.e., ATTBI) and the pre-
trained language model (i.e., BERT). Second, for the ARSC
dataset, several other models are used for experimental eval-
uation, including ATTBI+NTL, BERT+NTL, MEDA-PN,
and MemIML, as these models are not suitable for the other
two datasets. Specifically, NTL can be used to demonstrate
the significance of the metric learning module. Third, for
the 20News and HuffPost datasets, several latest models
are used for experiments, including DS+RRML, LasAML,
LEA, MetaPrompting, and TART.

NTL: NTL (i.e., neural tensor layer) is a fundamental
classifier, which makes classification predictions by simply
constructing a single-layer feed-forward neural network.

Matching Network (Vinyals et al. 2016): A metric
learning model that adopts the attention mechanism to an-
alyze the similarity between feature vector pairs.

Prototype Network (Snell, Swersky, and Zemel 2017):
A metric learning model that maps samples into a high-
dimensional space and generates the average value of each
class as the class prototype.

Relation Network (Hu et al. 2018): The relation network
applies a non-linear classifier to measure the similarity be-
tween the class center and the sample.

Table 3: Ablation study on the ARSC dataset.

Method w/ distil Accuracy Test time Variance

w/o MSR ! 84.85 8.19 0.33
w/o RRED ! 86.42 8.62 0.11
ProtoRectifier ! 87.56 8.65 0.15

Induction Network (Geng et al. 2019): It is a combina-
tion of meta-learning and dynamic routing (Sabour, Frosst,
and Hinton 2017), which aims to improve the text classifica-
tion performance.

MEDA-PN (Sun et al. 2021): It is proposed to compute
the minimum enclosing ball of the support set and synthesize
the samples for data augmentation.

MemIML (Zhao et al. 2022): It is a memory imitation
meta-learning approach that enhances the model’s depen-
dence on the support set when adapting to a new task.

RRML (Bertinetto et al. 2019): RRML computes class
vectors by solving the ridge regression problem on the sup-
port set.

LaSAML (Luo et al. 2021): The Label-semantic Aug-
mented Meta-Learner attaches class names to the input sen-
tence and investigates the potential of using class name in-
formation for few-shot text classification.

LEA (Hong and Jang 2022): LEA is an embedding
transfer method as a way to gain task-level attention through
a meta-learning framework.

MetaPrompting (Hou et al. 2022): MetaPrompting is
proposed to address the problem that soft prompt learning
relies heavily on good initialization, by designing a general-
ized soft prompt framework to improve the model’s gener-
alization ability.

TART (Lei et al. 2023): Task adaptive networks are pro-
posed to improve the discrimination of similar semantics by
mapping samples into a task-relevant space.

Implementation Details To compare the performance of
different models, we conduct experiments for 2-way 5-shot
tasks with the ARSC sentiment classification dataset. Mean-
while, with the 20news and HuffPost datasets, we conduct
experiments for 1-shot and 5-shot tasks. We randomly gener-
ate 20,000 training episodes, 2,000 validation episodes and
5,000 test episodes.

ProtoRectifier is implemented using PyTorch with smooth
gradient descent training and iterative parameter updating
based on the Adam optimizer (Loshchilov and Hutter 2019)
and weight decay (0.01). Specifically, we set the relaxation
factor λ to 0.7, the initial learning rate to 7e-5, the gradient



Table 4: Experiment results of news datasets (20News & HuffPost) on 5-way k-shot tasks, where k is set to 1 and 5.

Accuracy(%) Test time(µs/10 queries) Variance
20News HuffPost 20News HuffPost 20News HuffPostMethod Metric 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

cosine 35.64 44.01 34.36 48.5 57.17 61.12 16.34 17.88 6.28 8.5 1.32 2.39ATTBI+Matching euclid. 36.87 45.30 31.06 44.49 45.57 101.90 30.58 32.16 8.20 1.98 0.69 2.19
euclid. 37.86 46.96 32.79 45.09 61.72 69.00 18.59 19.09 4.76 6.65 2.23 1.52ATTBI+Prototype cosine 36.97 48.11 38.96 46.12 48.13 59.62 29.95 34.84 9.00 2.78 0.68 1.02

ATTBI+Relation - 33.93 43.66 21.72 28.63 77.10 78.35 23.43 38.05 1.18 1.36 1.85 0.08
ATTBI+Induction - 30.34 35.91 30.76 37.07 27.94 42.74 24.02 24.86 0.89 0.23 1.09 0.65

cosine 60.54 64.98 42.23 48.59 16.70 18.01 18.97 19.33 0.67 0.22 0.7 0.8BERT+Matching euclid. 61.53 65.80 45.98 69.52 16.23 16.8 18.16 18.81 0.16 0.28 1.27 0.73
euclid. 64.26 76.91 46.93 68.05 14.49 17.08 18.03 18.62 0.13 0.04 0.77 0.29BERT+Prototype cosine 63.11 74.34 43.10 57.82 17.52 19.70 16.81 17.46 0.29 0.15 0.11 0.33

BERT+Relation - 53.86 67.78 41.29 54.88 17.14 18.78 20.81 21.15 0.65 0.15 0.33 0.14
BERT+Induction - 58.22 60.03 40.62 57.16 26.61 52.58 24.19 24.97 0.97 0.02 0.85 0.22
BERT+RRML - 32.93 49.78 41.36 61.53 1039.56 1416.08 66.47 68.08 0.07 0.08 0.09 0.10
DS+RRML(2020) - 52.36 68.99 42.41 62.29 20.43 26.69 16.21 16.87 0.01 0.09 0.08 0.09
LaSAML(2021) - 51.84 66.93 62.53 70.10 77.3 139.34 30.41 32.53 0.13 0.67 0.13 0.11
LEA(2022) - 53.47 65.88 48.43 71.6 - - - - - - - -
MetaPrompting(2022) - 68.83 82.95 71.93 76.32 - - - - - - - -
TART(2023) - 67.0 83.2 46.9 66.8 34.62 30.81 30.43 31.47 0.08 0.08 0.10 0.11
ProtoRectifier(Ours) euclid. 70.56 85.48 62.10 77.67 8.48 8.51 7.76 7.93 0.04 0.05 0.07 0.08

step to 32, the warm-up learning rate to 0.06, and the dropout
to 0.4 to prevent over-fitting. The experiment is done using
a single NVIDIA GeForce RTX 3090, if not specified oth-
erwise. On a hold-out validation set, hyper-parameters are
further fine-tuned.

4.2 Experimental Results
We analyze the experimental results from the perspective of
classification accuracy and computational overhead in this
section.

Classification Accuracy The experimental results are
shown in Tables 5 and 4. Accordingly, we can observe
that ProtoRectifier outperforms the classification accuracy
of other baseline methods in most cases, especially on the
20news dataset. Such a result demonstrates that ProtoRecti-
fier is superior in few-shot learning. Specifically, key find-
ings are summarized as follows.

(1) Compared with baseline methods, the classification
accuracy of the proposed model improves approximately 2%
over the best baseline on the ARSC dataset. Similarly, there
are 2.28% improvement on the 20news dataset and 1.35%
improvement on the HuffPost dataset for the 5-shot task.
Specifically, even though the accuracy decreases slightly for
the 1-shot task on the HuffPost dataset, it is still higher than
the latest model TART and is competitive with LaSAML.

(2) In general, the BERT pre-trained language model ef-
fectively improves the performance of the meta-leaner, in-
dicating that traditional meta-classifiers can achieve com-
petitive results together with a transformer-based encoder.
In particular, the prototypical network outperforms other
classifiers, which does not depend on the weight matrix
and parameters. Moreover, since BERT handles contex-
tual classification better than keyword-based classification,
”DS+RRML” performs better than ”BERT+RRML” on the
20news and HuffPost datasets.

Time Consumption We evaluate the time consumption of
different models by comparing the calculation time for the
prediction of 10 queries. The results are illustrated in Ta-
bles 5 and 4. We can see that, compared with the baselines,
ProtoRectifier has the lowest test time on all three datasets.
Specifically, we have the following observations.

(1) Compared with baseline models, ProtoRectifier
achieves a significant improvement in the inference speed.
For example, it is 12x faster than LaSAML on the 20news
dataset and 2x faster than the BERT-based prototype net-
work, demonstrating the effectiveness of model distilla-
tion. In particular, due to the specific requirements of the
DS+RRML model for text feature extraction, we chose not
to compare the corresponding time overhead.

(2) Compared with the BERT pre-training models, the
attention-based encoding models result in much higher time
overhead. Meanwhile, there is no significant difference in
time consumption between different BERT-based models,
indicating that the meta-learner has less impact on the
model’s time complexity than the encoding module.

(3) In general, the variance of time consumption of pre-
trained language models is smaller than attention-based
models, where a lower variance indicates the performance is
more stable. Such a result suggests that the proposed method
is stable in time consumption when used in new domains.

Memory Consumption We present the memory con-
sumption (i.e., FLOPs) of different models on the 20news
dataset in Table 1. It can be seen that BERT-based mod-
els consume much higher memory resources. Additionally,
when configured with the same encoding module, complex
classifiers such as the induction network result in larger
FLOPs, due to the fact that they have much more param-
eters. Based on distillation compression, the FLOPs of the
proposed model have dropped 5x compared with that of the
LaSAML model. Such a performance is comparable to non-



(a) books.t2: Att (b) books.t2: BERT (c) books.t2: Ours (d) books.t5: Att (e) books.t5: BERT (f) books.t5: Ours

(g) 20News: Att (h) 20News: BERT (i) 20News: Ours (j) HuffPost: Att (k) HuffPost: BERT (l) HuffPost: Ours

Figure 4: Representation visualization of query texts. Subfigures (a-c) and (d-f) represent the visualization results of Attention
ProtoNet, BERT ProtoNet, and ProtoRectifier on the books.t2 and books.t5 domains of the ARSC dataset. Subfigures (g-i) and
(j-l) are the visualization result of the 20News and HuffPost datasets.

pretrained language models based on the attention mecha-
nism.

Different Distance Metrics Considering that the perfor-
mance of both the matching network and the prototype net-
work rely on the distance metric used for feature similarity
estimation, we adopt two metrics which are cosine distance
and Euclidean distance for experiments, as illustrated in Ta-
ble 5 and 4. Results show that there exist performance differ-
ences between the two metrics, indicating that the choice of
distance metric has an indispensable impact on the model’s
performance. Specifically, although the matching network is
designed to use the cosine distance, it achieves better perfor-
mance when applying the Euclidean distance for similarity
calculation.

Ablation Study To further validate the effectiveness of
ProtoRectifier, a set of ablation experiments are conducted.
Specifically, we consider two ablated models of ProtoRecti-
fier. The first one removes the proto-refactor from the frame-
work, and is named as w/o MSR. The second one removes
the BGRU optimization layer, and is represented as w/o
RRED. The corresponding results are shown in Table 3.

We find that both of the ablated models lead to worse per-
formance than the full model, which confirms the necessity
of the respective modules. In particular, removing the MSR
module leads to a larger variance in time consumption, in-
dicating that the model’s stability declines. Meanwhile, the
RRED module is capable of improving the model’s classi-
fication accuracy while bringing in a slight time overhead.

4.3 Text Representation Visualization
We visualize the text representation results of the query
set based on PCA (Hotelling 1933), as shown in Figure 4.
Specifically, three models are compared, which are pro-
totype network with attention-based word vector encoder,
Protonet with BERT encoder, and the proposed ProtoRec-

Table 5: Experimental results of the ARSC dataset on 2-way
5-shot tasks, including the classification accuracy (%) and
the test time (µs/10 queries) as well as its variance.

Method Metric Accuracy Test time Variance
NTL - 59.95 13.04 2.86

cosine 70.17 17.41 4.03Matching euclid. 69.43 32.69 10.93
euclid. 71.81 12.97 5.66Prototype cosine 72.84 31.53 10.48

Relation - 68.18 40.52 11.27

ATTBI

Induction - 72.26 42.08 5.74
NTL - 62.35 17.80 1.51

cosine 81.34 15.44 0.19Matching euclid. 77.87 16.03 0.17
euclid. 82.27 15.68 0.14Prototype cosine 81.69 15.72 0.11

Relation - 83.12 20.54 0.13

BERT

Induction - 85.18 28.22 0.19
MEDA-PN(2021) - 85.68 - -
MemIML(2022) - 85.69 - -

ProtoRectifier(Ours) euclid. 87.56 8.65 0.15

tifier. The generated text embeddings are mapped into 2-
dimensions, and different colored dots are used to represent
samples from different domains.

First, we find that vectors generated by the Attention Pro-
toNet model fail to distinguish samples with different labels.
Second, the BERT ProtoNet model produces more discrimi-
native representations of query texts, even though the bound-
aries of domains with similar meanings are blurred. Third,
compared with these two models, the proposed ProtoRecti-
fier has much better discriminative capability. Specifically,
reducing the distance between similar samples makes the
discrepancy between different classes more significant. To
sum up, the visualization result demonstrates the effective-
ness of ProtoRectifier in generating discriminative represen-
tations for few-shot text classification tasks.



5 Conclusion
To solve the limited labeled text classification problem in
cross-domain scenarios, we proposed a prototype rectifica-
tion framework (i.e., ProtoRectifier) based on meta-learning.
On one hand, an encoder optimization module is designed
to generate better text representations as well as improve the
inference speed. On the other hand, a mean shift rectifica-
tion module is developed to acquire precise prototypes of
distinct domains. To verify the effectiveness of the proposed
framework, We conducted extensive experiments based on
three real-world datasets. Results demonstrated that the pro-
posed framework achieves not only high classification accu-
racy but also low computation overhead, which significantly
outperforms state-of-the-art baselines.

6 Limitations
Due to the limitations of the available dataset, only text data
is considered in this study. In future research work, the gen-
eralization ability of multimodal data can be further inves-
tigated. Moreover, the computation efficiency is not tested
on some complicated models such as MetaPrompting due to
resource constraints.
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