
HyperCL: A Contrastive Learning Framework for Hyper-Relational
Knowledge Graph Embedding with Hierarchical Ontology

Yuhuan Lu, Weijian Yu, Xin Jing, Dingqi Yang*

State Key Laboratory of Internet of Things for Smart City and
Department of Computer and Information Science, University of Macau, China

{yc17462, mc14948, yc27431, dingqiyang}@um.edu.mo

Abstract

Knowledge Graph (KG) embeddings are essen-
tial for link prediction over KGs. Compared
to triplets, hyper-relational facts consisting of
a base triplet and an arbitrary number of key-
value pairs, can better characterize real-world
facts and have aroused various hyper-relational
embedding techniques recently. Nevertheless,
existing works seldom consider the ontology
of KGs, which is beneficial to link prediction
tasks. A few studies attempt to incorporate the
ontology information, by either utilizing the
ontology as constraints on entity representa-
tions or jointly learning from hyper-relational
facts and the ontology. However, existing ap-
proaches mostly overlook the ontology hier-
archy and suffer from the dominance issue
of facts over ontology, resulting in subopti-
mal performance. Against this background,
we propose a universal contrastive learning
framework for hyper-relational KG embed-
dings (HyperCL), which is flexible to inte-
grate different hyper-relational KG embedding
methods and effectively boost their link predic-
tion performance. HyperCL designs relation-
aware Graph Attention Networks to capture
the hierarchical ontology and a concept-aware
contrastive loss to alleviate the dominance is-
sue. We evaluate HyperCL on three real-world
datasets in different link prediction tasks. Ex-
perimental results show that HyperCL consis-
tently boosts the performance of state-of-the-
art baselines with an average improvement of
3.1-7.4% across the three datasets.

1 Introduction

Knowledge Graphs (KGs) which represent a net-
work of real-world entities and exhibit the rela-
tionship between them, have empowered a wide
range of applications, such as question answering
(Yih et al., 2015) or recommender systems (Zhang
et al., 2016). KGs are generally expressed as a set

*Corresponding author.

of triplets; each triplet denoted by (head, relation,
tail), or (h, r, t) for short, encodes the connection
from a head entity to a tail entity, such as (Apple,
headquarters location, Cupertino) shown in Fig. 1.
To better illustrate real-world facts, hyper-relational
facts are developed in Freebase (Bollacker et al.,
2008) and Wikidata (Wikidata, 2022), which con-
sist of not only a base triplet (h, r, t), but also an
arbitrary number of key-value pairs (k, v) further
describing the base triplet, represented as (h, r, t,
k1, v1, ...). Fig. 1 presents an example of hyper-
relational facts on Wikidata (Apple, industry, soft-
ware industry, of, computer program, of, operating
system).

To effectively make use of hyper-relational facts,
recent studies have proposed various embedding
methods to solve link prediction tasks over KGs.
Most of them learn to capture the structural infor-
mation encoded in hyper-relational facts with Con-
volutional Neural Networks (CNNs) (Rosso et al.,
2020), Graph Neural Networks (GNNs) (Galkin
et al., 2020), or Transformer (Wang et al., 2021).
However, they often neglect the importance of mod-
eling ontology in KGs, which has shown to be sig-
nificantly useful (Rosso et al., 2021). For example,
the entities computer program and operating sys-
tem in Fig. 1 are hard to differentiate and tend to
have similar representations by current embedding
methods since they are affiliated to the same hyper-
relational fact and have a common key of. Never-
theless, they can be more distinguishable through
the ontology. As shown in Fig. 2, computer pro-
gram and operating system respectively belong to
different concepts program and system. Hence, it is
beneficial to incorporate the ontology information
into entity representations.

In this context, existing hyper-relational KG em-
bedding methods employ the ontology information
of KGs as type constraints or joint learning. Specif-
ically, most specific concepts for entities are con-
sidered as entity types and used to compute the



Figure 1: A real-world example of (hyper-relational)
facts from Wikidata.

similarity between entities (Liu et al., 2021). The
most speci�c concepts for entities are identi�ed by
the ontology relationinstance_ofin Fig. 2. For ex-
ample,enterpriseandbrandare two entity types for
the entityApple. However, these existing methods
do not model the hierarchical structure of the ontol-
ogy and thus fail to capture the semantic relations
between entity types, which is a strong clue for
entity representations. For example, two speci�c
conceptsprogramandsystemin Fig. 2 belong to a
common abstract conceptsoftware, which indicates
the semantic relatedness between entitiescomputer
programandoperating system. On the other hand,
joint learning methods combine hyper-relational
facts with the ontology of KGs, formulating a joint
model to learn the representations of both entities
and concepts (Lu et al., 2023b; Luo et al., 2023a).
Yet, they are either in�exible to accommodate the
hierarchical ontology as the type constraint meth-
ods or lack consideration of the dominance issue
of hyper-relational facts over the ontology. Specif-
ically, due to the highly imbalanced numbers of
entities and concepts (the latter is usually much
less than the former), the learning process is domi-
nated by learning from the facts rather than from
ontology (using GNNs for example), resulting in
the information of ontology barely encoded into en-
tities and thus causing the suboptimal performance
(as evidenced by our experiments below that ad-
dressing the dominance issue can boost the link
prediction performance by 2.5-5.8%).

Against this background, we propose a uni-
versal contrastive learning framework for hyper-
relational KG modeling (HyperCL ), which is �ex-
ible to integrate different hyper-relational KG em-
bedding methods. Speci�cally, we inherit the most

Figure 2: A hierarchical ontology of partial entities in
Fig. 1. Yello blocks denote concepts. There are two
kinds of ontology triplets,(entity, instance_of, concept)
and(concept, subclass_of, concept).

prominent encoder-decoder architecture (Galkin
et al., 2020; Luo et al., 2023b) as the backbone of
our framework and devise a Concept-aware Con-
trastive Learning (CCL) module to enhance hyper-
relational KG embedding methods of this architec-
ture (four state-of-the-art encoder-decoder models
are selected to verify the effectiveness of HyperCL
in the experiments). The CCL module �rst cap-
tures the hierarchical structure of ontology; we use
relation-aware Graph Attention Networks (GATs)
to encode the sophisticated concept information,
which accounts for the heterogeneous relationships
between concepts and incorporates the heterogene-
ity into entity and concept representations. After-
ward, it builds two views (i.e., an instance view for
hyper-relational facts and an ontology view for the
hierarchical ontology) of KGs. Finally, it develops
a concept-aware contrastive loss to enforce the rep-
resentations of the same entities across two views
to be close to each other while those of different
but semantically similar entities to be apart. This
design thereby alleviates the dominance issue of
hyper-relational facts by �rst decoupling the learn-
ing process from the facts and ontology and then
connecting them via our contrastive loss. HyperCL
is trained using a multi-task learning strategy, being
able to accelerate the optimization process. Our
contributions can be summarized as follows:

• We revisit the existing approaches that employ
the ontology of KGs for hyper-relational KG em-
beddings, and discover two key limitations: 1)
the ignorance of the ontology hierarchy; and 2)
the dominance issue of facts over ontology.

• We propose HyperCL framework to subtly model
both hyper-relational facts and the hierarchical
ontology of KGs. A CCL module is designed,



where the relation-aware GATs are used to cap-
ture the hierarchical structure of ontology while
the concept-aware contrastive loss is employed
to alleviate the dominance issue, both of which
enhance the hyper-relational KG embeddings.

• We conduct a thorough evaluation of HyperCL to
demonstrate its effectiveness in boosting the link
prediction performance of four hyper-relational
KG embedding methods on three real-world KGs.
Results show that HyperCL can consistently
boost the performance of these methods with
an average improvement of 3.1-7.4% across the
three datasets.

2 Related Work

2.1 Hyper-Relational Facts Modeling

The triple representation of a KG oversimpli�es the
intricate structure of information stored in the KG
(Rosso et al., 2020), especially for hyper-relational
facts where each fact is composed of multiple enti-
ties and relations. Some previous works employed
an n-ary representation for hyper-relational facts,
i.e., a set of relation-entity pairs (Wen et al., 2016;
Zhang et al., 2018; Guan et al., 2019; Fatemi et al.,
2021; Liu et al., 2021; Wang et al., 2023a). Upon
such n-ary representations, these approaches learn
either relatedness between relation-entity pairs or
relatedness among all entities in a fact. How-
ever, recent studies (Rosso et al., 2020) discov-
ered that the base triplet of a hyper-relational fact
preserves the essential information, and advised
directly learning from hyper-relational facts. Fol-
lowing this suggestion, HINGE (Rosso et al., 2020),
NeuInfer (Guan et al., 2020), and ShrinkE (Xiong
et al., 2023) separately model base triplets and
key-value pairs. GRAN (Wang et al., 2021) pro-
poses a heterogeneous graph to distinguish between
the relation-entity connections in base triplets and
those in key-value pairs. HyNT (Chung et al., 2023)
devises a context Transformer to learn the repre-
sentations of numeric literals in either triplets or
quali�ers. HyperFormer (Hu et al., 2023) encodes
the local-level sequential information in hyper-
relational facts with Transformers. MSeaHKG (Di
and Chen, 2021), StarE (Galkin et al., 2020), HyT
(Yu and Yang, 2021), QUAD (Shomer et al., 2022),
and HAHE (Luo et al., 2023b) design GNNs to
represent the base triplets together with key-value
pairs.

Our work focuses on a different perspective to
improve current hyper-relational KG embedding

methods by subtly incorporating the ontology of
KGs. To the best of our knowledge, this is the
�rst universal framework for modeling both hyper-
relational facts and ontology information.

2.2 Ontology of KGs

The ontology of a KG provides rich descriptions
of the semantics of entities, which promotes the
representation of the KG (Krompaß et al., 2015).
Some recent studies utilized the concepts in ontol-
ogy as entity types to constrain the representation
of entities (Krompaß et al., 2015; Xie et al., 2016;
Niu et al., 2020; Cui et al., 2021; Rosso et al., 2021;
Yang et al., 2023; Li et al., 2023). RAM (Liu et al.,
2021) extends the type-constraint mechanism to en-
compass hyper-relational facts, representing entity
types through linear combinations of latent vectors.
HELIOS (Lu et al., 2023a) investigates the prob-
lem of hyper-relational schema modeling with �at
entity ontology. However, these previous works
fail to accommodate the hierarchical structure of
ontology. To address the above limitations, JOIE
(Hao et al., 2019) and DGS (Iyer et al., 2022) de-
velop a joint learning architecture to learn from
both triplets and ontology. sHINGE (Lu et al.,
2023b), tNaLP (Guan et al., 2021), and DHGE
(Luo et al., 2023a) follow this fashion, using two
pipelines to represent hyper-relational facts and the
ontology, respectively. Nevertheless, sHINGE and
tNaLP parallelly learn from multiple types for an
entity, also neglecting the hierarchical nature of
ontology; DHGE overlooks the dominance issue
of facts over ontology, rendering the model train-
ing dominated by hyper-relational facts while the
ontology information is barely encoded into entity
representations.

We argue that the above concerns can be well
addressed by our HyperCL framework.

3 Preliminaries

In this section, we introduce some important no-
tions about the Hyper-relational Knowledge Graph
(HKG) and present the latest encoder-decoder ar-
chitecture for HKG embedding.

3.1 Hyper-Relational Knowledge Graphs

We formalize two views of the HKG and present
the de�nition of the link prediction task on it.

Instance view of the HKG. The instance view
of the HKG consists of an entity setE and an in-
stance relation setR I . A hyper-relational fact



from the instance view can be represented as a
base triplet(h; r I ; t) with a set of associated key-
value pairsf (ki ; vi )g

n
i =1 , whereh; t; v i 2 E and

r I ; ki 2 R I .
Ontology view of the HKG. The ontology view

of the HKG is comprised of the same entity setE,
a concept setC and an ontology relation setR O .
The ontology relation set can be further divided
into two subsetsR Oe andR Oc, representing entity-
concept relations and concept-concept relations,
respectively. Accordingly, there exist two kinds
of triplets in the ontology view,(e; rOe; c) 2 E �
R Oe � C and(ci ; rOc; cj ) 2 C � R Oc � C .

Link prediction on the HKG . The task of link
prediction on the HKG is to predict a missing el-
ement from hyper-relational facts in the instance
view. For a hyper-relational fact, the missing one
can be any entity inf h; t; v1; v2; : : : ; vng or any
relation inf r I ; k1; k2; : : : ; kng.

Since the ontology view only contains triplets,
the term “hyper-relational fact” is speci�cally used
to denote the facts in the instance view throughout
this paper.

3.2 Encoder-Decoder Architecture for HKGs

The encoder-decoder architecture is the most preva-
lent and widely adopted framework for HKG em-
bedding, which proves to be effective in link pre-
diction (Galkin et al., 2020; Luo et al., 2023b). As
shown in Fig. 3, this architecture (the grey part)
is composed of an encoder (mostly GNNs) and a
decoder (mostly Transformers). Speci�cally, the
encoder captures the intricate relationship between
entitiesE and relationsR I in theinstance view, en-
coding the structural information to obtain the up-
dated embeddingsbE and cR I . The decoder extends
the capabilities of the architecture by capturing the
semantic correlation between entities and relations
within each hyper-relational fact, generating the
�nal output for link prediction.

In this work, we inherit the encoder-decoder ar-
chitecture as the backbone of our framework, and
integrate multiple state-of-the-art HKG embedding
methods to validate the effectiveness of our frame-
work in the experiments.

4 Methodology

This section introduces our universal con-
trastive learning framework (HyperCL), for hyper-
relational KG embeddings. As shown in Fig. 3, our
Concept-aware Contrastive Learning (CCL) mod-

ule is proposed to be universally compatible with
any encoder-decoder architecture. Speci�cally, our
CCL consists of two key components: 1) relation-
aware graph attention networks to obtain the up-
dated entity embeddings in the ontology vieweE;
2) a concept-aware contrastive loss function that
captures the shared information by both views to
get the �nal entity representationsE. In the follow-
ing, we elaborate on the above two components and
present a multi-task learning approach for model
training.

4.1 Relation-Aware Graph Attention Layers

For theontology view, we employ a graph encoder
to capture the sophisticated hierarchical concept in-
formation and encode it into high-order entity em-
beddings. Since the vanilla Graph Neural Networks
(GNNs) fail to accommodate the diverse ontology
relation types, we re�ne the original Graph At-
tention Networks (GATs) (Veli�cković et al., 2017)
with relation type embeddings to adaptively incor-
porate the heterogeneous relationships into node
representations.

Speci�cally, the ontology view can be regarded
as a graphGO , where each entity or concept is
associated with a node inGO . Without loss of
generality, we depict a single relation-aware graph
attention layer in the following. Given a nodei , its
neighbors are denoted byN i . The aggregation of
the �rst-hop structural information ofi can be ex-
pressed as a linear combination of its neighboring
nodes' representations:

hN i =
X

j 2N i

� ij h j (1)

whereh j refers to the representation of nodej and
� ij denotes the attention score from nodei to node
j , which is computed by:

� ij =
exp

�
a

�
W Oh i kW Oh j kW bb r (i;j )

��

P
k2N i

exp
�
a

�
W Oh i kW OhkkW bb r (i;k )

��

(2)
wherea represents the attention mechanism that ap-
plies a single layer of feed-forward neural network
with the LeakyReLU activation function.W O and
W b are learnable parameters.r (i; j ) denotes the
relation type between nodei and nodej andb r (i;j )
denotes the embedding ofr (i; j ). Then the repre-
sentation of nodei is updated by:

h (l )
i = �

�
W (l )

l

�
h (l � 1)

i + h (l � 1)
N i

��
(3)



Figure 3: Overview of our HyperCL framework. The grey box denotes the link prediction pipeline with the encoder-
decoder architecture while the yellow box represents the pipeline of our Concept-aware Contrastive Learning (CCL)
module. The details of the contrastive learning are depicted in the bottom right. In this framework,E is the input
entity embedding set,bE is the updated entity embedding set in the instance view,eE is the updated entity embedding
set in the ontology view, andE is the �nal entity embedding set updated by CCL module. Likewise,R I is the input
instance relation set,cR I is the updated instance relation set, andR O is the input ontology relation set.

whereW (l )
l is the learnable parameter at thel-

th layer and� refers to the activation function.
Through multi-layer message passing and infor-
mation aggregation, we can obtain the �nal embed-
dings of entities in the ontology vieweE.

4.2 Concept-Aware Contrastive Loss

After receiving the updated entity embeddingsÊ
and eE from the instance and ontology views respec-
tively, a concept-aware contrastive loss is devel-
oped to pull the representations of the same entity
across two views together while separates apart
those of different but semantically similar entities,
thereby strengthening the distinction between en-
tity representations and alleviating the dominance
of instance view information. Furthermore, the
concept-aware contrastive loss is developed to dis-
tinguish positive and hard-negative samples (enti-
ties under the same/similar concept). This design
is motivated by the fact that the easy-negative sam-
ples can be effectively distinguished by minimizing
the link prediction loss as existing approaches do
(e.g., StarE (Galkin et al., 2020), HyT (Yu and
Yang, 2021), QUAD (Shomer et al., 2022), and
HAHE (Luo et al., 2023b)), while our concept-
aware contrastive loss complementarily focuses on
the hard-negative samples. A similar idea has also
been adopted by (Yang et al., 2023), where a fast-
thinking process ef�ciently �lters out easy-negative

samples, while a slow-thinking process focuses on
distinguishing hard-negative samples.

Speci�cally, a concept-aware batch selection
strategy is proposed, ensuring all entities in a batch
belong to a common concept. For a concept in the
ontology view, the Breadth-First Search (BFS) al-
gorithm is used to collect entities belonging to the
concept. As shown in Fig. 4, the BFS starts from
the three conceptsci , cj andck , and attains their
corresponding entity setsf ei ; ej g, f ek ; em ; epg and
f ei ; ej ; ek ; em ; epg, respectively. Then batches are
selected from these entity sets while meeting the
requirement that one batch can only be randomly
sampled from one entity set. To prevent over�tting,
we implement a size threshold to select batches
from entity sets whose sizes are larger than the
threshold. Compared to the traditional random
sampling-based batch selection, our strategy has
three advantages: 1) enforces contrastive learning
to focus on separating entities with similar seman-
tics (common concepts), thereby facilitating the
distinct representation of each entity; 2) sets up a
size threshold to concentrate on those hard to be
distinguished entities, thus improving the ef�ciency
of contrastive learning; 3) maintains inherent dis-
tribution biases of concepts while implementing
batch selection. For each entityei in a batch, we
hold the two views of the same entity as a positive
pair (êi ; eei ). On the other hand, any other entityej



Figure 4: An example of the entity sets obtained by the
Breadth-First Search (BFS) algorithm. Different colors
indicate different concepts and their corresponding en-
tity sets.

in the same batch is deemed a negative entity and
is used to construct the negative pairs(êi ; eej ) and
(êj ; eei ). Finally, an extended InfoNCE loss (Wang
et al., 2023b) is utilized as the contrastive loss:

L CL (i ) =

� log
exp

�
s(êi ; eei )

� cl

�

P
j 2H i [f i g

�
exp

�
s(êi ; eej )

� cl

�
+ exp

�
s(êj ; eei )

� cl

��

(4)
wheres(�) is a cosine similarity metric to measure
the similarity between two vectors,H i is the set of
negative entities forei and� cl is the temperature hy-
perparameter controlling the strength of penalties
on negative entities.

4.3 Multi-task Training

The CCL module subtly connects entity embed-
dings in both views in a self-supervised manner.
To ensure the separability and �exibility of CCL,
only the updated entity representations in the in-
stance view are fed into the subsequent modules
in HyperCL for link prediction, generating a link
prediction lossL LP , similar to previous HKG em-
bedding methods. Hence, the overall loss function
is de�ned as:

L = L LP + � L CL (5)

where� is a hyperparameter trading off the two
losses.

Given the dif�culty in identifying the most suit-
able� , we employ a multi-task training strategy by
alternating the training procedures of link predic-
tion and contrastive learning. The corresponding
parameters in the two pipelines are updated alter-
natively until the link prediction pipeline reaches
convergence. Note that during the training phase of
the contrastive learning pipeline, any entity in the
same batch can be used as the negative entity for

others. The code of HyperCL is publicly available
online1.

5 Experiments

In this section, we present the experimental setup,
results, and discussion, answering the following
questions.RQ1: Can HyperCL consistently boost
the link prediction performance of different hyper-
relational KG embedding methods?RQ2: What's
the impact of the concept-aware contrastive loss
on link prediction performance?RQ3: What's the
impact of modeling the hierarchical structure of
ontology on link prediction performance?

5.1 Experimental Setup

5.1.1 Datasets

We conduct experiments on three commonly used
hyper-relational KG datasetsJF17K (Wen et al.,
2016), WikiPeople (Guan et al., 2019), and
WD50K (Galkin et al., 2020), where the data
provider already splits the training and test datasets.
As these datasets do not contain ontology informa-
tion, we crawl concepts from their corresponding
data sources (Freebase and Wikidata). For Free-
base, we extract concepts directly from the entity
node depicted as "/type/object", where the hier-
archical concepts for an entity are also exhibited.
For Wikidata, we �rst collect concepts through
the property "instance_of" for each entity and then
extract deeper concepts through the property "sub-
class_of" for each concept, until no deeper con-
cepts are found. Table 1 shows the statistics of our
datasets.

5.1.2 Baselines

We consider a sizeable collection of state-of-the-art
techniques from two categories. The �rst category
includes model learning from hyper-relational facts
only: m-TransH (Wen et al., 2016);RAE (Zhang
et al., 2018);NaLP (Guan et al., 2019);NeuInfer
(Guan et al., 2020);HINGE (Rosso et al., 2020);
ShrinkE (Xiong et al., 2023);GRAN (Wang et al.,
2021);MSeaHKG (Di and Chen, 2021);HyNT
(Chung et al., 2023);HyperFormer (Hu et al.,
2023);StarE (Galkin et al., 2020);HyT (Yu and
Yang, 2021);QUAD (Shomer et al., 2022);HAHE
(Luo et al., 2023b). The second category includes
model learning from both hyper-relational facts and
ontology of KGs:RAM (Liu et al., 2021);tNaLP

1https://github.com/UM-Data-Intelligence-Lab/
HyperCL_code




	Introduction
	Related Work
	Hyper-Relational Facts Modeling
	Ontology of KGs

	Preliminaries
	Hyper-Relational Knowledge Graphs
	Encoder-Decoder Architecture for HKGs

	Methodology
	Relation-Aware Graph Attention Layers
	Concept-Aware Contrastive Loss
	Multi-task Training

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Hyperparameters and Environment

	Overall Performance (RQ1)
	Ablation Study
	Impact of the Concept-Aware Contrastive Loss (RQ2)
	Impact of the Hierarchical Ontology (RQ3)


	Conclusion
	Limitations
	Ethics Statement
	Baseline Details
	Hyperparameter Settings
	Training Details

