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Abstract

Knowledge Graph (KG) embeddings are essen-
tial for link prediction over KGs. Compared
to triplets, hyper-relational facts consisting of
a base triplet and an arbitrary number of key-
value pairs, can better characterize real-world
facts and have aroused various hyper-relational
embedding techniques recently. Nevertheless,
existing works seldom consider the ontology
of KGs, which is beneficial to link prediction
tasks. A few studies attempt to incorporate the
ontology information, by either utilizing the
ontology as constraints on entity representa-
tions or jointly learning from hyper-relational
facts and the ontology. However, existing ap-
proaches mostly overlook the ontology hier-
archy and suffer from the dominance issue
of facts over ontology, resulting in subopti-
mal performance. Against this background,
we propose a universal contrastive learning
framework for hyper-relational KG embed-
dings (HyperCL), which is flexible to inte-
grate different hyper-relational KG embedding
methods and effectively boost their link predic-
tion performance. HyperCL designs relation-
aware Graph Attention Networks to capture
the hierarchical ontology and a concept-aware
contrastive loss to alleviate the dominance is-
sue. We evaluate HyperCL on three real-world
datasets in different link prediction tasks. Ex-
perimental results show that HyperCL consis-
tently boosts the performance of state-of-the-
art baselines with an average improvement of
3.1-7.4% across the three datasets.

1 Introduction

Knowledge Graphs (KGs) which represent a net-
work of real-world entities and exhibit the rela-
tionship between them, have empowered a wide
range of applications, such as question answering
(Yih et al., 2015) or recommender systems (Zhang
etal., 2016). KGs are generally expressed as a set
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of triplets; each triplet denoted by (head, relation,
tail), or (h, r, t) for short, encodes the connection
from a head entity to a tail entity, such as (Apple,
headquarters location, Cupertino) shown in Fig. 1.
To better illustrate real-world facts, hyper-relational
facts are developed in Freebase (Bollacker et al.,
2008) and Wikidata (Wikidata, 2022), which con-
sist of not only a base triplet (A, 7 t), but also an
arbitrary number of key-value pairs (k, v) further
describing the base triplet, represented as (h, # f,
ki1, vy, ...). Fig. 1 presents an example of hyper-
relational facts on Wikidata (Apple, industry, soft-
ware industry, of, computer program, of, operating
system).

To effectively make use of hyper-relational facts,
recent studies have proposed various embedding
methods to solve link prediction tasks over KGs.
Most of them learn to capture the structural infor-
mation encoded in hyper-relational facts with Con-
volutional Neural Networks (CNNs) (Rosso et al.,
2020), Graph Neural Networks (GNNs) (Galkin
et al., 2020), or Transformer (Wang et al., 2021).
However, they often neglect the importance of mod-
eling ontology in KGs, which has shown to be sig-
nificantly useful (Rosso et al., 2021). For example,
the entities computer program and operating sys-
tem in Fig. 1 are hard to differentiate and tend to
have similar representations by current embedding
methods since they are affiliated to the same hyper-
relational fact and have a common key of. Never-
theless, they can be more distinguishable through
the ontology. As shown in Fig. 2, computer pro-
gram and operating system respectively belong to
different concepts program and system. Hence, it is
beneficial to incorporate the ontology information
into entity representations.

In this context, existing hyper-relational KG em-
bedding methods employ the ontology information
of KGs as type constraints or joint learning. Specif-
ically, most specific concepts for entities are con-
sidered as entity types and used to compute the



Figure 2: A hierarchical ontology of partial entities in
Fig. 1. Yello blocks denote concepts. There are two
kinds of ontology triplets(entity, instance_of, concept)

Figure 1: A real-world example of (hyper-relational
g P (hyp )and(concept, subclass_of, concept)

facts from Wikidata.

prominent encoder-decoder architecture (Galkin
similarity between entities (Liu et al., 2021). The et al., 2020; Luo et al., 2023b) as the backbone of
most speci ¢ concepts for entities are identi ed by our framework and devise a Concept-aware Con-
the ontology relationstance_ofin Fig. 2. For ex- trastive LearningCCL) module to enhance hyper-
ample enterpriseandbrandare two entity types for relational KG embedding methods of this architec-
the entityApple However, these existing methods ture (four state-of-the-art encoder-decoder models
do not model the hierarchical structure of the ontolare selected to verify the effectiveness of HyperCL
ogy and thus fail to capture the semantic relationsn the experiments). The CCL module rst cap-
between entity types, which is a strong clue fortures the hierarchical structure of ontology; we use
entity representations. For example, two speci crelation-aware Graph Attention Networks (GATS)
conceptgprogramandsystemnin Fig. 2 belongtoa to encode the sophisticated concept information,
common abstract concegftware which indicates  which accounts for the heterogeneous relationships
the semantic relatedness between entd@aputer between concepts and incorporates the heterogene-
programandoperating systemOn the other hand, ity into entity and concept representations. After-
joint learning methods combine hyper-relationalward, it builds two views (i.e., an instance view for
facts with the ontology of KGs, formulating a joint hyper-relational facts and an ontology view for the
model to learn the representations of both entitiefierarchical ontology) of KGs. Finally, it develops
and concepts (Lu et al., 2023b; Luo et al., 2023ah concept-aware contrastive loss to enforce the rep-
Yet, they are either in exible to accommodate theresentations of the same entities across two views
hierarchical ontology as the type constraint methto be close to each other while those of different
ods or lack consideration of the dominance issuéut semantically similar entities to be apart. This
of hyper-relational facts over the ontology. Specif-design thereby alleviates the dominance issue of
ically, due to the highly imbalanced numbers ofhyper-relational facts by rst decoupling the learn-
entities and concepts (the latter is usually muchng process from the facts and ontology and then
less than the former), the learning process is domeéonnecting them via our contrastive loss. HyperCL
nated by learning from the facts rather than fromis trained using a multi-task learning strategy, being
ontology (using GNNs for example), resulting in able to accelerate the optimization process. Our
the information of ontology barely encoded into en-contributions can be summarized as follows:
tities and thus causing the suboptimal performance o o
(as evidenced by our experiments below that ad- e revisit the existing approaches that employ

dressing the dominance issue can boost the link the ontology of KGs for hyper-relational KG em-
prediction performance by 2.5-5.8%). beddings, and discover two key limitations: 1)
the ignorance of the ontology hierarchy; and 2)

Against this background, we propose a uni- yhe gominance issue of facts over ontology.

versal contrastive learning framework for hyper-

relational KG modelingKlyperCL ), which is ex- + We propose HyperCL framework to subtly model
ible to integrate different hyper-relational KG em- both hyper-relational facts and the hierarchical
bedding methods. Speci cally, we inherit the most ontology of KGs. A CCL module is designed,



where the relation-aware GATs are used to capnethods by subtly incorporating the ontology of
ture the hierarchical structure of ontology while KGs. To the best of our knowledge, this is the
the concept-aware contrastive loss is employedst universal framework for modeling both hyper-
to alleviate the dominance issue, both of whichrelational facts and ontology information.

enhance the hyper-relational KG embeddings.
2.2 Ontology of KGs

» We conduct a thorough evaluation of HyperCL to_l_h ol f 2 KG ides rich d inti
demonstrate its effectiveness in boosting the link ; f[ehon 0 ogytg a f T.rt(.)w eshr_lch escn![o |o?hs
prediction performance of four hyper-relationalO € semantics ot entities, which promotes the

KG embedding methods on three real-world KGSrepresentation of the KG (KrompaR et al., 2015).

Results show that HyperCL can ConsistentlySome recent studies utilized the concepts in ontol-

boost the performance of these methods witlPay as entity types to constrain the representation

an average improvement of 3.1-7.4% across thl%f_ enEItI?SZ(OKnglmqu tet Ialéozzoll'i Xie ettalll’ 22001261;'
three datasets. luetal., , Curetal., ;Rosso etal., ;

Yang et al., 2023; Li et al., 2023). RAM (Liu et al.,
2 Related Work 2021) extends the type-constraint mechanism to en-
compass hyper-relational facts, representing entity
types through linear combinations of latent vectors.
The triple representation of a KG oversimpli es the HEL|OS (Lu et al., 2023a) investigates the prob-
intricate structure of information stored in the KG |em of hyper-relational schema modeling with at
(Rosso et al., 2020), especially for hyper-relationakentity ontology. However, these previous works
facts where each fact is composed of multiple entifajl to accommodate the hierarchical structure of
ties and relations. Some previous works employe@ntology. To address the above limitations, JOIE
an n-ary representation for hyper-relational factsHao et al., 2019) and DGS (lyer et al., 2022) de-
i.e., a set of relation-entity pairs (Wen et al., 2016yelop a joint learning architecture to learn from
Zhang et al., 2018; Guan et al., 2019; Fatemi et alpoth triplets and ontology. sHINGE (Lu et al.,
2021; Liu et al., 2021; Wang et al., 2023a). Uponzong), tNaLP (Guan et al., 2021), and DHGE
such n-ary representations, these approaches legino et al., 2023a) follow this fashion, using two
either relatedness between relation-entity pairs Ofipelines to represent hyper-relational facts and the
relatedness among all entities in a fact. Howpntology, respectively. Nevertheless, sHINGE and
ever, recent studies (Rosso et al., 2020) discoyNaLP parallelly learn from multiple types for an
ered that the base triplet of a hyper-relational facentity, also neglecting the hierarchical nature of
preserves the essential information, and adVisegnto|ogy; DHGE overlooks the dominance issue
directly learning from hyper-relational facts. Fol-of facts over ontology, rendering the model train-
lowing this suggestion, HINGE (Rosso et al., 2020)jng dominated by hyper-relational facts while the
Neulnfer (Guan et al., 2020), and ShrinkE (Xiongontology information is barely encoded into entity
et al., 2023) separately model base triplets angepresentations.
key-value pairs. GRAN (Wang et al., 2021) pro- we argue that the above concerns can be well

poses a heterogeneous graph to distinguish betweeRjdressed by our HyperCL framework.
the relation-entity connections in base triplets and

those in key-value pairs. HyNT (Chung etal., 2023)3 Preliminaries

devises a context Transformer to learn the repre-

sentations of numeric literals in either triplets or!n this section, we introduce some important no-

quali ers. HyperFormer (Hu et al., 2023) encodestions about the Hyper-relational Knowledge Graph

the local-level sequential information in hyper-(HKG) and present the latest encoder-decoder ar-

relational facts with Transformers. MSeaHKG (Di chitecture for HKG embedding.

and Chen, 2021), StarE (Galkin et al., 2020), HyT .

(Yu and Yang, 2021), QUAD (Shomer et al., 2022),3'1 Hyper-Relational Knowledge Graphs

and HAHE (Luo et al., 2023b) design GNNs to We formalize two views of the HKG and present

represent the base triplets together with key-valughe de nition of the link prediction task on it.

pairs. Instance view of the HKG. The instance view
Our work focuses on a different perspective toof the HKG consists of an entity setand an in-

improve current hyper-relational KG embeddingstance relation seR;. A hyper-relational fact

2.1 Hyper-Relational Facts Modeling



from the instance view can be represented as ale is proposed to be universally compatible with
base tripleth; r, ;t) with a set of associated key- any encoder-decoder architecture. Speci cally, our
value pairsf (ki;vi)giL, , whereh;t;v; 2 E and CCL consists of two key components: 1) relation-
ri;ki2Ry. aware graph attention networks to obtain the up-
Ontology view of the HKG. The ontology view dated entity embeddings in the ontology Vvi&y
of the HKG is comprised of the same entity &gt 2) a concept-aware contrastive loss function that
a concept se€ and an ontology relation s&o. captures the shared information by both views to
The ontology relation set can be further dividedget the nal entity representatioris In the follow-
into two subsetR oe andR ¢, representing entity- ing, we elaborate on the above two components and
concept relations and concept-concept relationgresent a multi-task learning approach for model
respectively. Accordingly, there exist two kinds training.

of triplets in the ontology viewe; roe;c) 2 E
Roe C and(c;roc;¢)2C R oc C. 4.1 Relation-Aware Graph Attention Layers

Link prediction on the HKG . The task of link  For theontology viewwe employ a graph encoder
prediction on the HKG s to predict a missing el-tg capture the sophisticated hierarchical concept in-
ement from hyper-relational facts in the instanceformation and encode it into high-order entity em-
view. For a hyper-relational fact, the missing onepeddings. Since the vanilla Graph Neural Networks
can be any entity ifh;t;vi;ve;:ii;vag Or any  (GNNs) fail to accommodate the diverse ontology
relation infry ;ka;ka; i kng. relation types, we re ne the original Graph At-

Since the ontology view only contains triplets,tention Networks (GATs) (Vetikovit et al., 2017)
the term “hyper-relational fact” is speci cally used with relation type embeddings to adaptively incor-
to denote the facts in the instance view throughouporate the heterogeneous relationships into node
this paper. representations.

Speci cally, the ontology view can be regarded
as a graphx, where each entity or concept is
The encoder-decoder architecture is the most prevassociated with a node iB. Without loss of
lent and widely adopted framework for HKG em-generality, we depict a single relation-aware graph
bedding, which proves to be effective in link pre-attention layer in the following. Given a nodgits
diction (Galkin et al., 2020; Luo et al., 2023b). As neighbors are denoted ;. The aggregation of
shown in Fig. 3, this architecture (the grey part)the rst-hop structural information af can be ex-
is composed of an encoder (mostly GNNs) and gressed as a linear combination of its neighboring
decoder (mostly Transformers). Speci cally, the nodes' representations:
encoder captures the intricate relationship between hy = X h (1)
entitiesE and relationdR | in theinstance viewen- Ni N v
coding the structural information to obtain the up- T
dated embeddintﬁ andR, . The decoder extends whereh; refers to the representation of ngdand
the capabilities of the architecture by capturing the j; denotes the attention score from nade node
semantic correlation between entities and relationg, which is computed by:
within each hyper-relational fact, generating the

3.2 Encoder-Decoder Architecture for HKGs

nal output for link prediction. _ o &Xpa W ohikW ohj KW yb, i
In this work, we inherit the encoder-decoder ar- | = ° on . €XD @ W ohiKW ohi kW g, i)
chitecture as the backbone of our framework, and ' ’(2)

integrate multiple state-of-the-art HKG embeddingyyherea represents the attention mechanism that ap-
methods to validate the effectiveness of our framep"es a single layer of feed-forward neural network
work in the experiments. with the LeakyReLU activation functio o and

Wy, are learnable parametendi;j ) denotes the
relation type between nodeand nodg andb, ;)
denotes the embedding ofi;j ). Then the repre-
sentation of nodeis updated by:

4 Methodology

This section introduces our universal con
trastive learning framework (HyperCL), for hyper-
relational KG embeddings. As shown in Fig. 3, our

Concept-aware Contrastive Learning (CCL) mod- h= w® nl D+ hﬂi Y 3)



Figure 3: Overview of our HyperCL framework. The grey box denotes the link prediction pipeline with the encoder-
decoder architecture while the yellow box represents the pipeline of our Concept-aware Contrastive Learning (CCL)
module. The details of the contrastive learning are depicted in the bottom right. In this fram&imtke input

entity embedding seRis the updated entity embedding set in the instance \Baw,the updated entity embedding

set in the ontology view, anél is the nal entity embedding set updated by CCL module. Likewig,is the input
instance relation seR | is the updated instance relation set, &l is the input ontology relation set.

where W ,(') is the learnable parameter at the samples, while a slow-thinking process focuses on
th layer and refers to the activation function. distinguishing hard-negative samples.
Through multi-layer message passing and infor-

mation aggregation, we can obtain the nal embed- SPeci cally, a concept-aware batch selection
dings of entities in the ontology vie®. strategy is proposed, ensuring all entities in a batch
belong to a common concept. For a concept in the

ontology view, the Breadth-First Search (BFS) al-
gorithm is used to collect entities belonging to the
After receiving the updated entity embeddirijs concept. As shown in Fig. 4, the BFS starts from
andE from the instance and ontology views respecthe three concepts, ¢; andc, and attains their
tively, a concept-aware contrastive loss is devekorresponding entity set®;; g, f ex; em; e,g and
oped to pull the representations of the same entitfe ; g ; &; em; 9, respectively. Then batches are
across two views together while separates apagelected from these entity sets while meeting the
those of different but semantically similar entities,requirement that one batch can only be randomly
thereby strengthening the distinction between ersampled from one entity set. To prevent over tting,
tity representations and alleviating the dominanceve implement a size threshold to select batches
of instance view information. Furthermore, thefrom entity sets whose sizes are larger than the
concept-aware contrastive loss is developed to dishreshold. Compared to the traditional random
tinguish positive and hard-negative samples (entsampling-based batch selection, our strategy has
ties under the same/similar concept). This desigthree advantages: 1) enforces contrastive learning
is motivated by the fact that the easy-negative sante focus on separating entities with similar seman-
ples can be effectively distinguished by minimizingtics (common concepts), thereby facilitating the
the link prediction loss as existing approaches ddalistinct representation of each entity; 2) sets up a
(e.g., StarE (Galkin et al., 2020), HyT (Yu and size threshold to concentrate on those hard to be
Yang, 2021), QUAD (Shomer et al., 2022), anddistinguished entities, thus improving the ef ciency
HAHE (Luo et al., 2023b)), while our concept- of contrastive learning; 3) maintains inherent dis-
aware contrastive loss complementarily focuses otribution biases of concepts while implementing
the hard-negative samples. A similar idea has alsbatch selection. For each entityin a batch, we
been adopted by (Yang et al., 2023), where a fashold the two views of the same entity as a positive
thinking process ef ciently Iters out easy-negative pair (& ; &). On the other hand, any other entéy

4.2 Concept-Aware Contrastive Loss



others. The code of HyperCL is publicly available
onlinet.

5 Experiments

In this section, we present the experimental setup,

results, and discussion, answering the following

questionsRQ1: Can HyperCL consistently boost
Figure 4: An example of the entity sets obtained by th the link prediction performance of different hyper-
_Bre_adth-F_irst Search (BFS) algorith_m. Different (?Olorsei:’ﬁlea?rigzlclfgfetrr:]eb(zggIcneng:\f\?;(iE{C%ﬁ.tr\évsTs/tesIoss
indicate different concepts and their corresponding en-"~ o
tity sets. on link prediction performanceRQ3: What's the

impact of modeling the hierarchical structure of
in the same batch is deemed a negative entity an@ntology on link prediction performance?
is used to construct the negative pdiés & ) and
(¢ ;®). Finally, an extended InfoNCE loss (Wang
et al., 2023b) is utilized as the contrastive loss: 5.1.1 Datasets

We conduct experiments on three commonly used

5.1 Experimental Setup

Leui)= . hyper-relational KG datasef#17K (Wen et al.,
exp A&ia) 2016), WikiPeople (Guan et al., 2019), and
log s@.) WD50K (Galkin et al., 2020), where the data

j2H [t ig ©XP % texp = provider already splits the training and test datasets.
(4)  As these datasets do not contain ontology informa-
wheres( ) is a cosine similarity metric to measure tion, we crawl concepts from their corresponding
the similarity between two vectorbl; is the set of data sources (Freebase and Wikidata). For Free-
negative entities fog; and ¢ is the temperature hy- base, we extract concepts directly from the entity

perparameter controlling the strength of penaltiesiode depicted as "/type/object”, where the hier-

on negative entities. archical concepts for an entity are also exhibited.
_ o For Wikidata, we rst collect concepts through
4.3 Multi-task Training the property "instance_of" for each entity and then

The CCL module subtly connects entity embed€Xtract deeper concepts through the property "sub-
dings in both views in a self-supervised mannefclass_of" for each concept, until no deeper con-
To ensure the separability and exibility of CCL, Cepts are found. Table 1 shows the statistics of our
only the updated entity representations in the indatasets.
_stance view are fed mto_ the subseque_nt mo_olulegll2 Baselines
in HyperCL for link prediction, generating a link
prediction losd. p , similar to previous HKG em-
bedding methods. Hence, the overall loss functio
is de ned as:

L=Lwp + Lco 5)

We consider a sizeable collection of state-of-the-art
fechniques from two categories. The rst category
includes model learning from hyper-relational facts
only: m-TransH (Wen et al., 2016)RAE (Zhang
et al., 2018)NaLP (Guan et al., 2019)eulnfer

where is a hyperparameter trading off the two (Guan et al., 2020HINGE (Rosso et al., 2020);
losses. ShrinkE (Xiong et al., 2023)GRAN (Wang et al.,

Given the dif culty in identifying the most suit- 2021);MSeaHKG (Di and Chen, 2021)HyNT

able , we employ a multi-task training strategy by (Chung et al., 2023)HyperFormer (Hu et al.,
alternating the training procedures of link predic-2023);Stark (Galkin et al., 2020)HyT (Yu and
tion and contrastive learning. The corresponding @19, 2021)QUAD (Shomer et al., 2022){AHE
parameters in the two pipelines are updated altef-U0 €t al., 2023b). The second category includes
natively until the link prediction pipeline reaches Model learning from both hyper-relational facts and
convergence. Note that during the training phase ofntology of KGs:RAM (Liu etal., 2021)tNaLP

the contrastive learning pipeline, any entity in the Ihttps://github.com/UM-Data-Intelligence-Lab/
same batch can be used as the negative entity felyperCL_code
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