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Abstract—Many service computing applications require real-
time dataset collection from multiple devices, necessitating efficient
sampling techniques to reduce bandwidth and storage pressure.
Compressive sensing (CS) has found wide-ranging applications in
image acquisition and reconstruction. Recently, numerous deep-
learning methods have been introduced for CS tasks. However,
the accurate reconstruction of images from measurements remains
a significant challenge, especially at low sampling rates. In this
article, we propose Uformer-ICS as a novel U-shaped transformer
for image CS tasks by introducing inner characteristics of CS into
transformer architecture. To utilize the uneven sparsity distribu-
tion of image blocks, we design an adaptive sampling architecture
that allocates measurement resources based on the estimated block
sparsity, allowing the compressed results to retain maximum in-
formation from the original image. Additionally, we introduce a
multi-channel projection (MCP) module inspired by traditional
CS optimization methods. By integrating the MCP module into
the transformer blocks, we construct projection-based transformer
blocks, and then form a symmetrical reconstruction model using
these blocks and residual convolutional blocks. Therefore, our
reconstruction model can simultaneously utilize the local features
and long-range dependencies of image, and the prior projection
knowledge of CS theory. Experimental results demonstrate its sig-
nificantly better reconstruction performance than state-of-the-art
deep learning-based CS methods.

Index Terms—Compressive sensing service, compressive
sampling, image reconstruction, adaptive sampling, deep learning.
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I. INTRODUCTION

S INCE the advent of the information age, people have in-
creasingly relied on the Internet to transmit, process, and

share multimedia data, thereby gradually spurring the devel-
opment of service computing. The cloud platform provides a
seamless way to process and save data through the Internet.
However, some service computing applications require real-
time data collection from multiple devices [1], [2], necessi-
tating sufficient network bandwidth and storage space. As a
result, it’s vital to improve the efficiency of data sampling and
maintain the data content to reduce network bandwidth and
storage space requirements for these applications. Compressive
sensing (CS) is an effective signal acquisition technique that
can reconstruct a signal using its compressed measurements,
which are significantly less than the measurements required by
the Nyquist sampling theorem [3], [4]. The sampling process
for a signal x ∈ Rn×1 can be expressed as y = Φx, where
Φ ∈ Rm×n is a measurement matrix wherein n >> m and
y ∈ Rm×1 comprises the compressed measurements. Because
the CS technique can achieve a high compression ratio while
maintaining a high reconstruction quality, it can be potentially
used in numerous signal acquisition and compression applica-
tions [5], [6], especially for tasks involving image signals with
high data redundancy [7]. The reconstruction process of CS
involves finding solutions for an underdetermined linear system.
To achieve high efficiency and accurate reconstruction results,
most traditional CS reconstruction algorithms use nonlinear
iterations to reconstruct the original signal [8], [9], [10], [11],
which is extremely time-consuming. Therefore, these traditional
CS methods may not be suitable for real-time applications.
Additionally, these traditional CS methods cannot achieve a high
reconstruction quality because they lack adaptability to sample
signals with varying characteristics.

Some deep learning-based image CS methods have applied
convolutional neural networks (CNNs) in the CS task and can
achieve both high reconstruction quality and efficiency [12],
[13], [14], [15], [16]. These deep learning-based image CS
methods use CNN to replace the time-consuming iterative recon-
struction process in traditional CS algorithms. They adaptively
learn the measurement matrix and reconstruction network using
a massive amount of training data. To maintain theoretical inter-
pretability, some of them unfold the traditional CS algorithms
into their CS networks using CNNs [14], [16], [17]. However,
Owing to the spatial invariance and local inductive biases, CNNs
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cannot effectively capture long-range dependencies. This results
in a limitation to these deep learning-based image CS methods.

Recently, some CS methods [18], [19], [20], [21] have em-
ployed the transformer architecture into CS tasks. The trans-
former has been extremely successful in various language pro-
cessing [22], [23], [24] and computer vision [25], [26] tasks
owing to the robust ability of its self-attention mechanism for
capturing long-range dependencies. Inspired by the success-
ful application of transformer, these CS methods [18], [19],
[20], [21] utilize the transformer architecture for reconstruction
and obtain better performance than previous CNN-based CS
methods. While some transformer-based methods [18], [19]
also unfold the traditional CS algorithms, their image-level or
single-channel level projection cannot make full use of multi-
channel feature information in the middle stage. Furthermore,
these methods [18], [19], [20], [21] samples all the image blocks
at the same sampling ratio without considering the unbalanced
block sparsity. These limited correlations between inner CS
characteristics and the transformer architecture hinder the fur-
ther improvement of reconstruction performance.

In this work, we propose a specialized U-shaped transformer
architecture for image CS called the Uformer-ICS, which in-
troduces adaptive sampling and projection into the transformer
architecture. A natural image usually has uneven sparsity dis-
tribution. To utilize the uneven sparsity distribution of image
blocks, we design an adaptive sampling architecture that esti-
mates sparsity from image measurements and allocates mea-
surement resources based on the estimated block sparsity. The
adaptive sampling model initially samples each image block at a
small sampling ratio and estimates the block sparsity according
to the measurements. Then it allocates fewer sampling resources
to the image block with higher sparsity and vice versa. This
approach can make the compressed measurements contain the
maximum possible information of the sampled image under
a fixed sampling ratio. The image signal is then adaptively
sampled block-by-block using a single learnable measurement
matrix. Additionally, we introduce a multi-channel projection
(MCP) module inspired by traditional CS optimization meth-
ods [8], [27]. The original projection operation is applied block-
wise on the image domain. To make it suitable for transformer
architecture and make full use of multi-channel information,
the MCP module adapts projection on the multi-channel feature
domain. By integrating the MCP module into the transformer
blocks, we construct projection-based transformer blocks, and
then build a symmetrical reconstruction model using these
blocks and residual convolutional blocks. Therefore, our re-
construction model can simultaneously utilize the local fea-
tures, and long-range dependencies of image and the prior
projection knowledge of CS theory. Our Uformer-ICS is an
end-to-end framework that simultaneously learns the sampling
and reconstruction processes. Experimental results demonstrate
its superior reconstruction performance compared to existing
state-of-the-art deep learning-based CS methods.

The main contributions of this study are as follows:
� We propose a new transformer-based network for image

CS, called the Uformer-ICS, which effectively introduces

Fig. 1. Average reconstruction performances of the proposed and existing
state-of-the-art deep learning-based CS methods. The peak signal-to-noise ratio
(PSNR) scores shown are averaged over all images in the five test datasets: Set5,
Set11, Set14, BSD100, and Urban100. It is evident that the proposed method
achieves significantly better PSNR scores than state-of-the-art deep learning-
based CS methods.

two CS characteristics, adaptive sampling and projection,
into the transformer architecture.

� We design an adaptive sampling architecture to allocate
sampling resources to image blocks based on block spar-
sity. The block sparsity is estimated from the initial mea-
surements of the sampled image, and we evaluate three
sparsity estimation methods in the adaptive sampling ar-
chitecture.

� We design a MCP module to adapt the projection op-
eration into the multi-channel feature domain, and then
develop a symmetrical reconstruction model using a
projection-based transformer and residual convolutional
blocks, wherein each projection-based transformer block
is constructed by integrating the MCP module into the
original transformer blocks.

� We conduct extensive experiments to evaluate the proposed
Uformer-ICS. The comparison results demonstrate that it
outperforms existing state-of-the-art deep learning-based
CS methods (as shown in Fig. 1), and the ablation studies
validate the effectiveness of the proposed adaptive sam-
pling strategy and the MCP module.

The rest of this paper is organized as follows. Section II
reviews the traditional CS methods, deep learning-based CS
methods, and vision transformers. Section III presents the net-
work structure of the proposed Uformer-ICS. Section IV eval-
uates the performance of the proposed method and compares it
with state-of-the-art methods. Finally, conclusions are drawn in
Section V.

II. RELATED WORK

In this section, we present some knowledge of the traditional
CS methods, and review existing deep learning-based CS meth-
ods and vision transformers.
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A. Traditional CS

1) Block-Based CS: The size of the measurement matrix
in CS is calculated by multiplying the lengths of the input
signal and output measurements. When directly sampling the 1D
vector form of a 2D image, the required measurement matrix is
considerably large, which results in significantly high memory
and computational requirements for the sampling operation. To
address this issue, traditional CS algorithms usually sample an
image block-by-block [10]. Suppose that each image block xi is
of size B ×B and the measurement matrix is ΦB ∈ RnB×B2

,
where nB is the number of sampled measurements. The sam-
pling process is expressed as

yi = ΦB · T(xi), (1)

where T(xi) denotes the 1D vector form of the image block
xi and yi ∈ RnB×1 are the measurements of xi. The sampling
ratio (sr) is defined as sr = nB/B

2. Generally, an image block
with higher sparsity requires fewer measurements for recon-
struction [28]. Therefore, some traditional CS methods improve
the reconstruction quality by allocating sampling resources to
different blocks [29], [30].

2) Signal Reconstruction: To effectively reconstruct the
original signal, some traditional CS methods have developed
iterative reconstruction schemes to solve the following optimiza-
tion problem:

min
x̂i

1

2
‖ΦBT(x̂i)− yi‖22 +R(x̂i), (2)

where R(x̂i) denotes the hand-crafted prior term regarding the
structure of the original signal [8], [9], [11], [27]. Each iteration
operation includes the following operations:
� Projection onto the convex set: Given the reconstruction

result x̂(t)
i of the tth iteration step, this operation uses the

gradient descent method to minimize ‖ΦBT(x̂i)− yi‖22
in (2). Therefore, it can find a vector x̂(t+1)

i closer to the

hyperplane H = {x̂i : ΦBT(x̂i) = yi} than x̂
(t)
i without

a constraint, e.g., Sparsity constraint. Specifically, the pro-
jection operation is calculated as follows:

T(x̂
(t+1)
i ) = T(x̂

(t)
i ) +ΦT

B(yi −ΦBT(x̂
(t)
i ))/(1 + α),

(3)
where ΦT

B(yi −ΦBT(x̂
(t)
i )) denotes the gradient of

‖ΦBT(x̂i)− yi‖22 in (2) and α is the updating step length.
� Optimizing the prior term: This operation aims to minimize

the hand-crafted prior term R(x̂i) to constrain the current
reconstruction result x̂

(t+1)
i . For example, the iterative

shrinkage-thresholding algorithm (ISTA) [8] and approx-
imate message passing algorithm (AMP) [27] set the l1
norm as the prior term to constrain the signal Sparsity,
and use a shrinkage/thresholding non-linearity to process
x̂
(t+1)
i . The denoising-based AMP (DAMP) [31] assumes

that the original signal belongs to a certain image class C,
and uses a denoiser to project x̂(t+1)

i onto C.
Despite having good interpretability, traditional CS algo-

rithms suffer from poor reconstruction performance and low

efficiency because they cannot adaptively learn the features of
the original signal.

B. Vision Transformer

In 2017, the authors of [22] first proposed the transformer
for natural language processing tasks. Compared with previous
methods based on recurrent neural networks, the transformer
has a more powerful ability to model long-range dependen-
cies among tokens using the self-attention mechanism;thus,
it can achieve significantly better accuracy and scalability.
Specifically, the self-attention layer computes the key-query
dot-product among all input tokens. Therefore, its computation
complexity grows quadratically with an increase in the number
of tokens [22].

To efficiently handle high-resolution images, Vaswani
et al. [26] proposed the vision transformer (ViT) that divides
an image into non-overlapping patches and employs the trans-
former to capture dependencies among image patches for image
classification tasks. In some low-level vision tasks (e.g., image
denoising and image deblocking), an image may be divided
into numerous patches, making the computational complexity
of ViT extremely high and unacceptable. Considering this,
Liu et al. [32] designed a shifted window-based transformer,
which applies self-attention in each image window and uses
shifted window partitioning to bring connections across win-
dows. Moreover, Zamir et al. [33] proposed a transposed at-
tention scheme that computes the attention map across feature
channels. These efforts [32], [33] have significantly reduced
the computational complexity of the transformer for image
processing tasks, achieving a linear relationship between the
computational complexity and the image size.

C. Deep Learning-Based CS

In 2015, the authors of [34] used a deep learning method
to solve the signal reconstruction problem and proposed a
stacked denoising auto-encoder to reconstruct image patches
from their measurements. Inspired by the application of CNNs
in image restoration tasks, Kulkarni et al. [35] proposed a deep
CNN-based model to implement the non-iterative reconstruction
process. These two deep learning-based CS methods directly
reconstruct image patches from their measurements [34], [35].
To further improve the reconstruction performance, Shi et al.
proposed two end-to-end deep CNN-based models in [12], [36]
for image CS, which can simultaneously learn both the sampling
and reconstruction processes.

The above CS models directly regard the reconstruction pro-
cess as a deep learning task without considering the charac-
teristics of CS theory. To improve the interpretability, some
studies [14], [16], [37] designed CS networks by unfolding
traditional CS algorithms using CNNs. For example, inspired
by the traditional ISTA method [8], Zhang et al. [37] proposed a
deep network called ISTA-Net by solving the proximal mapping
associated with the sparsity-inducing regularizer using nonlinear
transformation. The authors of [14] proposed a denoising-based
deep CS network called AMP-Net, wherein the reconstruction
network unfolds the iterative denoising process of the AMP
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Fig. 2. Adaptive sampling model of the proposed Uformer-ICS. First, the image X is initially sampled, and the initial measurements are utilized to estimate the
block sparsity, which is used to adaptively allocate sampling resources for each block. Then, the image is further adaptively sampled block-by-block. The final
measurements are obtained by concatenating the initial measurements and adaptive measurements.

algorithm [27] and integrates deblocking modules to eliminate
the blocking artifacts.

Recently, some works [18], [19], [20], [21] have employed
the transformer architecture on the CS tasks inspired by the
successful application of the transformer on vision tasks.
The method [20] modified the transformer architecture to fit
the patch-to-pixel multi-stage pattern and built a transformer-
based hierarchical framework for CS tasks called TCS-Net. Ye
et al. [21] proposed a CNN-Transformer hybrid framework to
explore the representation capacity of local and global features.
To introduce CS characteristics into the transformer architec-
ture, the method [19] builds an ISTA-based transformer back-
bone that iteratively works with projection operation, and the
method [18] fuses the projection operation into a cross attention
block. However, they utilize the projection on the image-level
or single-channel level, which cannot fully use multi-channel
feature information in the middle stage. Moreover, the sparsity in
different areas of a natural image usually varies, and these meth-
ods [18], [19], [20], [21] sample all image blocks using the same
sampling ratio without appropriately considering the uneven
sparsity distribution. These insufficient correlations between CS
characteristics and the transformer architecture cause a limit to
getting further improvement in the reconstruction performance,
especially at small sampling ratios.

III. UFORMER-ICS

This section details the proposed Uformer-ICS. From an
overall perspective, the Uformer-ICS comprises an adaptive
sampling model and a reconstruction model. The adaptive sam-
pling model adaptively samples the image block-by-block using
a single learnable measurement matrix, and the reconstruction
model is a symmetrical U-shaped architecture that reconstructs
the original image from the measurements.

To illustrate the sampling and reconstruction processes, we
assume that the sampled image is a single-channel image
that is denoted as X ∈ RH×W×1, where H and W are the
height and width of image, respectively, and the block size
is B ×B × 1. The vector form of each image block xij is
represented as T(xij) ∈ RB2×1. Herein, i = {1, 2, . . . , h} and
j = {1, 2, . . . , w}, where h = H

B and w = W
B .

A. Adaptive Sampling Model

The detailed illustration of the adaptive sampling model is
shown in Fig. 2. The adaptive sampling model first samples
the initial measurements for each image block, then estimates
the block sparsity and assign sampling resources, and finally
adaptively samples the image.

1) Initial Sampling: It is impossible to access the image
before sampling and reconstructing it in some real sampling
scenarios. In works [38], [39], the sampling networks directly
apply transforms on the image to calculate saliency before
sampling it. Therefore, they are limited to tasks that have access
to the image before sampling, such as image compression and
re-sampling tasks, where the image is already stored on the disk
or in memory.

Given the target sampling ratio srt for the whole image, we
initially sample each image block with a smaller sampling ratio
srinit and then adaptively assign the rest sampling resources
according to the initial measurements. Assume that the learnable
measurement matrix is Φ ∈ RM×B2

, where M is the maximum
number of measurements for each image block. Each image
block xij is initially sampled as follows:

n0 = �B2 ∗ srinit�
y0
ij = Φ[1 : n0, :] · T(xij), (4)
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Algorithm 1: Sampling Resources Allocation.
Input: Sparsity information V, target sampling ratio srt,
image size H ×W , block size B, initial number n0 of
measurements

Output: measurement number mij

1: h,w = H/B,W/B
2: total = �srt ×H ×W �
3: rest = total − (n0 × h× w)
4: for i = 1 : h do
5: for j = 1 : w do
6: Vij = Vij/ sum(V)
7: mij = n0 + �rest×Vij�
8: end for
9: end for

where n0 is the initial measurement number, y0
ij ∈ Rn0×1 is the

initial measurements of the image block xij .
2) Sparsity Estimation: Because different image blocks have

different sparsity, the compressed measurements cannot contain
the maximum information of the original image if all image
blocks are sampled at the same sampling ratio. Generally speak-
ing, an image block with higher sparsity should be allocated
fewer sampling resources because it contains less information.

Before using sparsity estimation methods, we first obtain the
initial estimation x0

ij of each image block

x0
ij = Ψ[:, 1 : n0] · y0

ij . (5)

where Ψ ∈ RB2×M represents the learnable linear mapping
matrix. By reshaping and concatenating all x0

ij , a low-quality
estimation X0 is obtained for the input image X.

To estimate the sparsity of the image blocks, we utilize three
methods: saliency map (SM), standard deviation (STD), and
block difference (DIFF).

Saliency Map: The saliency map method employs discrete co-
sine transform (DCT) to calculate the saliency information [28],
[38], [40]. Specifically, the sparsity information Vij for each
block xij is calculated as

F = abs(Ct
−1(sign(Ct(X

0)))),

S = G ∗ F2,

Vij =
∑

s∈Sxij

s/
∑
s∈S

s, (6)

where Ct and Ct
−1 denotes the 2D DCT and its reverse opera-

tion, G is a 2D Gaussian low-pass filter for smoothing, and Sx0
ij

represents the corresponding region for each block x0
ij .

Standard Deviation: The work [30] assumes that an image
block xij with a larger standard deviation usually has a larger
complexity and estimates the standard deviation through the
measurements sampled by the Gaussian matrix. Inspired by it,
we calculate the standard deviation of each low-quality estima-
tion x0

ij as the sparsity information Vij for each block xij .
Block Difference: The adjacent regions in nature images usu-

ally have similar patterns, which benefit the image denoising

Fig. 3. Measurement allocations using three sparsity estimation methods for
the “Parrots” image at the sampling ratio of 0.1.

in the reconstruction. Therefore, the image block having more
similar adjacent blocks can be regarded as more sparse and
allocated fewer sampling resources. For an image block x0

ij ,
we first calculate the absolute difference with four adjacent
blocks {x0

i,j−1,x
0
i−1,j , x0

i,j+1, x0
i+1,j+1}, and then average the

difference into a scalar as the sparsity information Vij .
3) Adaptive Sampling: We assign the rest measurements us-

ing the sparsity informationVij and apply adaptive sampling for
each image block. According to the sparsity estimation methods
in Section III-A2, the sparsity information Vij is negatively
related to the sparsity. In other words, a larger Vij means that
the corresponding image block xij is less sparse and should be
allocated more sampling resources.

Algorithm 1 describes the process of allocating sampling
resources. The total number of measurements under the target
sampling ratio srt are first calculated, and the remaining sam-
pling resources are linearly assigned for each image block xij

based on the sparsity informationVij . Finally, the measurement
number mij ∈ (1, B2] is obtained for each image block xij .

To better illustrate the adaptive sampling mechanism, we
provide one example of the measurement allocations using three
sparsity estimation methods for the “Parrots” image shown in
Fig. 3. The block size is set to 32× 32, and the number on
the image block denotes the measurement number. It is evident
that image blocks with more complex structures are considered
to have less sparsity and are allocated more measurements. For
example, the eye in the “Parrots” contains more details and more
complex structures; thus, the corresponding image blocks in the
eye area are allocated more sampling resources. The upper-left
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Fig. 4. Overview of the reconstruction model of the proposed Uformer-ICS. Given the adaptive sampling result Y, the reconstruction model first applies linear
mapping on it and employs pixel shuffle operation to transform the combined mapping results into an image-like initialization X0. Then, the reconstruction model
feeds the obtained initialization X0 into the Head module for extracting shallow features Xh. Taking Xh as input, the Uformer module captures the long-range
dependencies to enhance the feature representation and outputs Xu. Finally, the Tail module generates the final reconstruction result X̂ by adding the initialization
X0 and aggregation features of Xu.

and lower-left corners are black backgrounds and therefore are
allocated less sampling resources.

Because different image blocks are allocated different mea-
surement numbers, generating a measurement matrix for each
possible measurement number results in a significant number of
parameters and extremely high memory occupation. To address
this problem, we use a scalable sampling strategy that requires
only one learnable measurement matrix to sample all image
blocks with different measurement numbers. Specifically, we
reuse the learnable measurement matrix Φ in the initial sam-
pling. Each image block is sampled as follows:

y1
ij = Φ[n0 + 1 : mij , :] · T(xij),

yij = concat(y0
ij ,y

1
ij), (7)

where yij ∈ Rmij×1 is the measurements of the image block
xij . We denote the collection of all measurements yij as Y.

B. Reconstruction Model

The overall structure of the reconstruction model is illus-
trated in Fig. 4. First, the initialization value X0 ∈ RH×W×1

of the input image X is generated by linearly mapping the
measurementsY directly. Specifically, we reuse learnable linear
mapping matrix Ψ in the sparsity estimation, and the image
initialization is calculated as:

T(x̂ij) = Ψ[:, 1 : mij ] · yij

X0 = Ξ({x̂ij}), (8)

where Ξ denotes the pixel shuffle operation [41] that repositions
elements from the channel dimension to the spatial dimension

and we use it to transform the combined linear mapping results
into an image-like feature X0.

Next, the initialization X0 is processed using a head module
Hhead to extend the channels and extract the local shadow fea-
turesXh ∈ RH×W×C0 , whereC0 is the number of channels. The
Uformer module then captures the long-range features from Xh

to obtain a feature Xu. Finally, a tail module Htail aggregates
Xu to produce a residual reconstruction result, and the final
reconstruction result X̂ is generated by adding the initialization
X0 and the residual reconstruction result.

In the subsequent subsections, the head and tail modules are
first illustrated and then the Uformer module is described in
detail.

C. Head & Tail Modules

As shown in Fig. 4, the head moduleHhead comprises several
convolutional layers and a residual convolutional block. After
obtaining the initialization result X0, the Hhead enlarges the
channels further and extracts local shallow features from X0 as
follows:

Xh = Hhead(X0), (9)

where Xh is of size H ×W × C0.
To ensure symmetry with the head module Hhead, the tail

module Htail stacks a residual convolutional block and several
convolutional layers. Given output Xu of the Uformer module,
the Htail aggregates the features of Xu to obtain the final
reconstruction result X̂ as follows:

X̂ = Htail(Xu) +X0, (10)

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 28,2024 at 03:26:57 UTC from IEEE Xplore.  Restrictions apply. 



2980 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 5. Illustrations of the feature down-sampling and up-sampling operations.

where X̂ is of size H ×W × 1, and the residual learning [42]
is applied to improve the convergence speed and reconstruction
performance of the proposed model.

D. Uformer

As illustrated in Fig. 4, the Uformer is a U-shaped four-level
hierarchical encoder-decoder. To introduce the prior knowl-
edge of CS into the transformer architecture, we propose a
multi-channel projection (MCP) and integrate it into the stacked
transformer blocks to develop the projection-based transformer
block. In the following sections, we will illustrate the overall
pipeline of the Uformer and present its components in detail.

1) Pipeline: Based on the common design of the U-shaped
structure [43], the output Xh of the head module is first passed
through four encoder levels. The resolutions of feature maps are
gradually reduced from the top to the bottom levels using feature
down-sampling operations shown in Fig. 5(a). We employ a
3× 3 convolutional layer and pixel unshuffle operation [41] to
double the number of channels and reduce the resolution by
50%. Therefore, the ith level of the encoder produces a feature
map of size H

2i × W
2i × 2iC0, where i ∈ [0, 1, 2, 3].

The decoder progressively recovers the high-resolution fea-
tures by using the low-resolution feature map from the lowest en-
coder level as its input. Fig. 5(b) shows the feature up-sampling
operation. We employ a 3× 3 convolutional layer and pixel
shuffle operation [41] to reduce the channels by 50% and double
the resolution. Moreover, the features obtained on the decoder
side are fused with the encoder features to enhance the feature
representation.

2) Window-Based Self-Attention: The computational com-
plexity of the original self-attention layer in the transformer in-
creases quadratically with image size. In this study, the window-
based multi-head self-attention (W-MSA) [32] is used to reduce
the computational complexity because it computes self-attention
in non-overlapping windows and its computational complexity
increases linearly with image size. Given an input feature map
Z ∈ RH ′×W ′×d, the W-MSA divides it into non-overlapping
windows of size W ×W × d. Suppose that P ∈ RW 2×d de-
notes the W 2 pixels in a window, the W-MSA applies the
self-attention process to these pixels as follows:

Q,K,V = PWq,PWk,PWv,

Attention(Q,K,V) = SoftMax
(
QKT /

√
d+B

)
V, (11)

where Wq,Wv,Wv ∈ Rd×d are the query, key, and value
projection matrices, respectively, Q,K,V denote the query,

key and value results, respectively, andB ∈ R(2 W 2−1)×(2 W 2−1)

denotes the learnable relative position bias. The attention results
are transformed into a feature map with the same size as Z. It
should be noted that we omit the multi-head format in (11) for
simplicity. Besides, we also use the shifted window partitioning
scheme [32] to capture dependencies across windows, and the
W-MSA with shifted window partitioning is referred to SW-
MSA.

3) Multi-Channel Projection: The projection operation
reuses the measurement matrix to make the current image re-
construction more similar to the ground truth image, which can
well utilize the prior knowledge of CS during the reconstruction
process. It is necessary to integrate this CS characteristic into the
transformer to achieve high performance. As shown in (3), the
projection operation updates each image block with a single
channel. However, the features in a transformer architecture
generally have smaller resolutions but much more channels than
the single-channel image. Therefore, the projection operation
cannot be directly applied to the transformer architecture.

To address this issue, we propose the multi-channel projection
(MCP), which is derived from the original projection opera-
tion expressed in (3) but applies block-wise projection on the
multi-channel feature domain. The details of MCP are shown
in Fig. 6. Specifically, MCP first reshapes the input feature into
an image-like feature X′ ∈ RH×W×C ′

using the pixel shuffle
operation [41], ensuring that it has the same resolution as the
input image. Thereafter, MCP applies block-wise projection to
each block of each channel of X′ feature using the learnable
measurement matrixΦ and the adaptive sampling resultsY. The
block-wise projection operation on each channel is calculated as
follows:

y′
ij,c = yij −Φ[1 : mij , :]T(x

′
ij,c)

T(x′′
ij,c) = T(x′

ij,c) +Φ[1 : mij , :]
Ty′

ij,c/(1 +αc), (12)

where c ∈ {1, . . . , C ′} is the channel index of X′, T(x′
ij,c)

denotes the 1D vector form of each block x′
ij,c in the cth

channel of X′, mij represents the measurement number of each
block in the sampling process, and updating step α ∈ RC ′

is
set to be learnable. By combining and reshaping the block-wise
projection results, we can also obtain a featureX′′ with the same
shape as X′. Finally, MCP applies the pixel unshuffle operation
to X′′ for restoring its channel number and original resolution.

4) Projection-Based Transformer Block: After constructing
the MCP module for the transformer architecture, we develop
a projection-based transformer block by integrating the MCP
module into the transformer architecture. Fig. 6 shows the
structure of the projection-based transformer block. Given the
input feature Finput, the entire process of the projection-based
transformer block can be formulated as

Z(0) = Finput

Z(k) = WTB(Z(k−1)), k = 1, . . . , L

Foutput = MCP(LN(Z(L))), (13)
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Fig. 6. Structure of the projection-based transformer block. First, L Transformer blocks are stacked to learn long-range dependencies, and then the multi-channel
projection module is used to update the multi-channel features block-wise.

where LN represents the layer normalization [44], and WTB
indicates the following calculation process of an original trans-
former block:

T(k) = Z(k−1) +W/SW-MSA(LN(Z(k−1)))

Z(k) = T(k) + FFN(LN(T(k))), (14)

where FFN denotes a feed-forward network containing two fully
connected layers. Following the shifted window partitioning
scheme [32], the W-MSA is used when k is odd and SW-MSA
is used when k is even. Because the MCP module reuses the
learnable measurement matrix and only introduces a learnable
updating step α, the projection-based transformer block can
exploit the prior knowledge of CS with a small computation over-
head and little extra parameters compared to original stacked
transformer blocks.

5) Feature Fusion: The encoder features are fused on the
decoder side to enhance the feature representation. Given two
features of the same size, they are directly concatenated in the
channel dimension and a 1× 1 convolutional layer is used to
reduce the number of channels in the concatenation result by
50%. Thereafter, a residual convolutional block is employed to
further improve the feature fusion ability. Therefore, the feature
fusion result has the same size as each input feature.

E. Loss Function

Following the settings of existing CS methods [12], [14], we
use the mean square error (MSE) to calculate the loss. The loss
function of the proposed model comprises three parts L1, L2

and L3.
Let {Xk}Nk=1 represent a training set. We first use the MSE

to measure the difference between the input images and their
corresponding reconstructed images as follows:

L1 =
1

2N

N∑
k=1

‖X̂k −Xk‖22, (15)

where X̂k denotes the reconstructed image of thekth input image
Xk. Inspired by the cycle-consistent loss [45], we also use the
MSE to measure the difference between the measurements of
the input images and the measurements of their corresponding

reconstructed images as follows:

L2=
1

2 N

N∑
k=1

h∑
i=1

w∑
j=1

‖ykij−Φ[1 : mkij , :]T(x̂kij)‖22, (16)

where T(x̂kij) denotes the 1D vector form of the image block
x̂kij in the reconstructed image X̂k. Considering that sparsity
estimation is based on low-quality estimation of image, we
further add an additional loss item to improve the accuracy of
sparsity estimation

L3 =
1

2 N

N∑
k=1

‖X̂0
k −Xk‖22, (17)

where X̂0
k is the low-quality estimation of image Xk.

Finally, we define the total loss of the proposed model as

L = L1 + λ1 · L2 + λ2 · L3, (18)

where λ1 and λ2 are the regularization weights, which are set to
0.1 by default.

IV. PERFORMANCE EVALUATION

A. Experimental Settings

1) Datasets: Compared to pure CNN models, a transformer
model needs to be trained using a much larger training set [26].
To thoroughly evaluate the performance of the proposed model,
we randomly select 40,000 images from the COCO 2017 Unla-
beled Images dataset1 [46] as the training dataset and 100 images
as the validation dataset. We conduct experiments to evaluate all
the CS methods over five commonly used datasets: Set5 [47],
Set11 [35], Set14 [48], BSD100 [49], and Urban100 [50]. For
all used datasets, we only utilize the Y channel in the YCbCr
color space of each color image.

2) Implementation Details: The image block size in the
sampling process is set to B = 32. Given the target sampling
ratio srt, the initially sampling ratio srinit is set to srt/2
when srt <= 0.1 and to srt/3 when srt > 0.1. The maximum
sampling ratio srmax for any image block is max(1.0, 2srt).

1https://cocodataset.org
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The number of channels in the head module is set to C0 = 32.
From the top to the bottom levels of the Uformer, the number
L of the attention layers and FFN layers in the projection-based
transformer block is set as [4, 4, 6, 6], the number of heads
in W/SW-MSA is set as [1, 2, 4, 8], and the window sizes in
W/SW-MSA are set to [8, 8, 4, 4].

We train the proposed Uformer-ICS for a maximum of 100
epochs at each sampling ratio. Early-stopping is used to suspend
training when there is no PSNR improvement on the validation
set after the 50th epoch. The batch size is set to 16. For each input
image in the training process, we first randomly flip and rotate it
to augment the image features and then randomly crop the aug-
mentation result into a sub-image of size 128× 128 for training.
We use the Adam optimizer [51] to optimize the parameters. The
learning rate is initialized at 0.0001 and then decayed to half if
there is no PSNR improvement on the validation dataset for
five epochs in the training process. We use PyTorch framework
to implement our models and conduct all the experiments on a
computer with a RTX4090 GPU and an Intel i9-10920X CPU. It
takes about 7 minutes to train one epoch. Our codes are available
at Github.2

3) Sampling and Reconstruction Using One Model: The
proposed model can also sample and reconstruct images at
arbitrary sampling ratios with only one-time training, which can
significantly reduce the training time and storage burden. In our
implementation, we term the proposed model with only one-time
training for arbitrary sampling ratios as Uformer-ICS+. In the
training process of Uformer-ICS+, each image in the training set
is randomly assigned a target sampling ratio ranging from 0.01–
0.5. Besides the training strategy, Uformer-ICS+ and Uformer-
ICS have different sizes of the measurement matrices. The size
of measurement matrix of Uformer-ICS is (B2 · srmax)×B2,
while that of Uformer-ICS+ is B2 ×B2 to deal with different
sampling tasks at varying srt. We test the performances of both
kinds of models in our experiments.

4) Competing Methods: We compare our method with eight
deep learning-based CS methods, which are developed using
CNNs or Transformers and have shown state-of-the-art recon-
struction performances.
� SCSNet [13]: This is a scalable sampling network that

shares a single learnable measurement matrix for multiple
reconstruction models.

� CSNet+ [12]: This network utilizes several residual con-
volutional blocks for image reconstruction.

� ISTA-Net++ [17]: This scalable sampling network uses
multiple non-learnable sampling matrices but only a single
deep-unfolding multi-stage network.

� AMP-Net [14]: This is a deep-unfolding multi-stage net-
work, which unfolds the traditional AMP method [27]
and integrates deblocking modules to eliminate blocking
artifacts.

� OCTUF [18]: This work utilize optimization-inspired
cross-attention transformer module to construct a
lightweight unfolding framework for image CS.

2https://github.com/RedamancyAY/Uformer-ICS

TABLE I
ABLATION STUDIES ON SPARSITY ESTIMATION METHODS

� TransCS [19]: This Transformer-CNN hybrid network con-
tains a customized ISTA-based transformer backbone to
model long-distance dependence and a auxiliary CNN to
capture the local features.

� CSformer [21]: This hybrid network utilizes two stems
to integrate the CNN and transformer architectures for
improved representation learning.

� DPC-DUN [52]: This deep unfolding network introduces
a path-controllable selector to dynamically select a rapid
and appropriate route for each image.

To keep consistency with other models, we set all the sampling
matrices learnable for ISTA-Net++ [17] and DPC-DUN [52].
Additionally, four traditional CS methods, the TV [9], BCS-
FOCUSS [11], DAMP [31], and MH-BCS-SPL [53], are also
compared to demonstrate the powerful learning ability of the
deep learning-based CS methods. We evaluate all of these meth-
ods using their publicly available implementation codes and re-
train the deep-learning models on our constructed COCO-40000
training set.

B. Ablation Studies

In this section, we conduct ablation studies on several com-
ponents of the proposed Uformer-ICS to investigate their effec-
tiveness and select the best settings.

1) Adaptive Sampling and Sparsity Estimation Methods: A
natural image usually contains different sparsities in different
image blocks. To retain more information of the original image
in the compressed measurements, we use an adaptive sampling
strategy to sample image blocks based on their sparsity. To
estimate the block sparsity of the sampled image, we utilize
three methods: SM, STD, and DIFF. Besides, to demonstrate
the effectiveness of the adaptive sampling strategy, we build a
non-adaptive model by discarding the adaptive sampling strat-
egy from the proposed Uformer-ICS and train it by sampling
each image block equally.

Table I shows the testing results of the adaptive and non-
adaptive models on Set11 and Urban100 datasets at five sam-
pling ratios {0.01, 0.04, 0.1, 0.25, 0.5}. As can be seen, our
models using any sparsity estimation methods can obtain better
reconstruction quality than the non-adaptive model. Compared
to the non-adaptive model, the average PSNR results on Ur-
ban100 on five sampling ratios {0.01, 0.04, 0.1, 0.25, 0.5} can
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TABLE II
ABLATION STUDY RESULTS OF THE PROPOSED UFORMER-ICS ON SET11 AND URBAN100 DATASETS AT DIFFERENT SAMPLING RATIOS (sr)

Fig. 7. Visual effects of the proposed multi-channel projection (MCP) modules at the sampling ratio of 0.1. It applies multi-channel block-wise projection to the
input feature map for feature updating. Note that we only extract the image feature maps before and after the MCP modules for comparison, and we utilize the tail
module Htail to convert these multi-channel feature maps into single-channel images for visualization.

be improved by 0.29 dB, 0.58 dB, and 0.80 dB for the adaptive
models when using STD, DIFF, and SM, respectively.

In conclusion, the adaptive sampling strategy can effectively
improve the reconstruction quality. Besides, the sparsity estima-
tion method SM can lead to better reconstruction quality than
STD and DIFF on the whole, especially in the large dataset
Urban100. This is because the DCT used by the SM method
can allow it to accurately capture the image’s energy distribution
and exhibit greater robustness to noise compared to the STD and
DIFF methods. Therefore, the SM method can better estimate
the sparsity in our model. In the next sections, we use the SM to
estimate sparsity by default if there are no special instructions.

For the proposed reconstruction model, we construct the
Uformer architecture to utilize the long-range dependency cap-
ture ability. Considering that CS characteristics are crucial for
image reconstruction in CS tasks [14], [16], we develop a
projection-based Transformer block to introduce the prior pro-
jection knowledge of CS into the transformer architecture. As
shown in Fig. 6, we integrate the MCP module into the original
stacked Transformer blocks to construct the projection-based
transformer block. Because the MCP reuses the measurement
matrix and the measurements to update the image block, it can
introduce the CS characteristics into the transformer architec-
ture. Additionally, it brings in little computation overhead and
few extra parameters by introducing only a learnable updating
step vector. As can be seen from the settings (a) and (d) in Table

II, the MCP only increases the model parameters from 9.1588 M
to 9.1589 M.

2) Multi-Channel Projection: To evaluate the effectiveness
of the MCP, we remove all the MCP modules in the projection-
based transformer block to test the reconstruction perfor-
mance. As shown in Table II, without the MCP modules, the
PSNR scores will drop by approximately 0.1∼1.17 dB and
0.24∼2.47 dB on Set11 and Urban100 datasets, respectively,
thereby demonstrating the importance of our MCP module for
image reconstruction.

In addition, Fig. 7 presents the visualization results of the
feature maps in the MCP modules of the proposed Uformer-
ICS. The sampling ratio is set to 0.1. Note that we use the tail
module Htail to convert the multi-channel feature maps into
single-channel images for visualization. It can be observed that
the projection results have finer details and clearer edges than
the input feature maps. The quantitative results in Table II and
the visual results in Fig. 7 verify the effectiveness of the multi-
channel projection.

3) Feature Fusion: In the proposed model, we use the con-
catenation operation for feature fusion to aggregate the encoder
features on the decoder side. In addition to the concatenation
operation, another commonly used feature fusion method is
the skip connection [42], which directly adds the features of
the two input branches element-wise. As can be seen from
Table II, the reconstruction performances of the concatenation
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TABLE III
QUANTITATIVE PERFORMANCE COMPARISONS OF THE PROPOSED UFORMER-ICS AND UFORMER-ICS+ WITH EXISTING CS METHODS UNDER MULTIPLE

SAMPLING RATIOS (sr)

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 28,2024 at 03:26:57 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: UFORMER-ICS: A U-SHAPED TRANSFORMER FOR IMAGE COMPRESSIVE SENSING SERVICE 2985

TABLE IV
TIME COMPLEXITY COMPARISON BETWEEN DIFFERENT CS METHODS

operation and skip connection have little difference on Set11
and Urban100, but the concatenation operation leads to a little
better reconstruction performance on the whole. This is because
the concatenation operation is more beneficial to generalization
ability since it allows for more information preservation. In
the following sections, we use the concatenation operation for
feature fusion by default.

4) Loss Function: Our loss function contains three parts
L1, L2 and L3. Besides two necessary loss items L1 and
L3, L2 is a regularization term to ensure cycle consistency.
To test the effectiveness of L2, we discard it in the training
process and evaluate the performance. As can be seen from
the settings (c) and (d) in Table II, the loss item L2 does
benefit the reconstruction performance in most cases. Specif-
ically, when the sampling ratio is larger than 0.1, the PSNR
scores with L2 can improve by approximately 0.06∼0.71 dB
and 0.21∼0.24 dB on Set11 and Urban100 datasets,
respectively.

C. Performance Evaluation

We compare the proposed method with other CS methods
in terms of the quantitative results, visual results, and model
complexity. The PSNR and structural similarity index measure
(SSIM) scores are used to quantitatively evaluate the reconstruc-
tion quality.

1) Quantitative Comparison: We calculate the average
PSNR and SSIM scores on the five testing datasets at the
sampling ratios ranging from 0.01–0.5. Table III lists the ex-
perimental results for all competing CS methods. Benefiting
from the powerful learning ability, all deep learning-based CS
methods outperform the traditional CS methods. The proposed
method achieves the best PSNR and SSIM scores for nearly
all the sampling ratios. Specifically, the proposed Uformer-ICS
can obtain significantly higher PSNR scores than other deep
learning-based methods on the Urban100 dataset, which con-
tains high-resolution images with different characteristics. The

proposed Uformer-ICS can also achieve the best SSIM scores
when the sampling ratio is smaller than 0.5.

Additionally, we also calculate the average PSNR scores over
all the five testing datasets at all sampling ratios, and the results
of these deep learning-based CS methods are shown in Fig. 1. It
is evident that the proposed method achieve significantly higher
scores than other deep learning-based methods for all sampling
ratios. The quantitative comparison results presented in Table III
and Fig. 1 indicate that the proposed method outperforms all
other CS methods and has a better generalization ability for
different datasets.

Regarding scalable sampling and reconstruction ability, the
proposed Uformer-ICS+ requires only one-time training but
can sample and reconstruct images at arbitrary sampling ratios.
Compared with the scalable CS methods SCSNet and ISTA-
Net++, the proposed Uformer-ICS+ can still obtain better PSNR
and SSIM scores in most cases. For the test datasets Set14 and
BSD100, the proposed Uformer-ICS+ achieve the best PSNR
scores compared to all other non-scalable deep learning-based
CS methods. These comparison results demonstrate the tremen-
dous potential of the proposed method for scalable sampling and
reconstruction.

2) Visual Comparison: Fig. 8 shows the visual results of dif-
ferent CS methods at the sampling ratios of 0.04 and 0.1, where
“Ours-Non-Adaptive” refers to the version of our Uformer-ICS
without the adaptive sampling module. The reconstruction re-
sults of all the traditional CS methods clearly show blocking
artifacts, whereas those of the deep learning-based CS meth-
ods show significantly fewer blocking artifacts. Moreover, the
visual results demonstrate that the proposed Uformer-ICS can
recover more image details and clearer edges than other deep
learning-based CS methods. For example, the reconstructed
images of our Uformer-ICS exhibit more details around the letter
area in the “ppt3” and “img-076” images. This is because the
proposed sampling model uses an adaptive sampling strategy
to allocate more sampling resources to the image block that
has less sparsity, and the proposed reconstruction model can
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Fig. 8. Reconstruction results of various CS methods at sampling ratios (srs) of 0.04 and 0.1. Note that “Ours-Non-Adaptive” refers to the version of our
Uformer-ICS without adaptive sampling module.

simultaneously capture the long-range dependency and local
features of the image to reconstruct image information.

D. Model Complexity

We test the average running times on different image reso-
lutions to evaluate the actual reconstruction efficiencies of all
competing CS methods. Specifically, we randomly select five
images from the ImageNet validation dataset and resize them to
128× 128, 256× 256, 512× 512, and 1024× 1024 using the
bicubic interpolation algorithm. Thereafter, the average running
times are calculated for the five images using these four kinds

of image resolutions. Additionally, we utilize the number of
floating-point operations (FLOPs) and parameters to theoreti-
cally quantify the time complexity of deep learning-based CS
methods. It should be noted that we calculate the FLOPs on an
input image of size 256× 256, and evaluate all the models at the
sampling ratio of 0.25. The traditional CS methods are tested on
the CPU device, whereas the deep learning-based CS methods
are tested on the GPU device.

Table IV presents the comparison results of model complexity.
As can be seen, traditional CS methods have much lower recon-
struction quality and significantly lower running speeds, which
may not satisfy the high-efficiency requirement of real-time
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applications. For example, they all cost more than two seconds to
reconstruct the image of size512× 512. All deep learning-based
CS methods have better PSNR scores and extremely faster
speeds than traditional ones. Moreover, the running speeds of
all deep learning-based CS methods are of the same order of
magnitude. This is because the GPU device has a powerful
computational ability and can run these deep learning-based
models at high speed. The proposed method can achieve the
best PSNR scores for all the image resolutions. Additionally, the
Uformer-ICS+ uses a single model for arbitrary sampling and
reconstruction tasks, which can significantly reduce the number
of parameters when sampling at multiple sampling ratios is re-
quired. Thus, the proposed method can well balance the trade-off
between model complexity and reconstruction performance. It
achieves the best reconstruction performance while maintaining
a modest model complexity.

V. CONCLUSION

In this article, we proposed a novel transformer-based network
for image CS, called Uformer-ICS, which effectively introduces
two CS characteristics into the transformer architecture. We
first designed an adaptive sampling architecture to retain the
maximum possible information of the original image under a
fixed sampling ratio. Specifically, it estimates sparsity from
image measurements and linearly allocates measurement re-
sources based on the estimated block sparsity. We utilized three
sparsity estimation methods to evaluate the adaptive sampling
architecture. Besides, we designed a MCP module to adapt the
projection operation into the multi-channel feature domain. We
constructed the projection-based transformer block by integrat-
ing the MCP module into the original transformer block and then
built a symmetrical reconstruction model using the projection-
based transformer blocks and residual convolutional blocks.
Experimental results verified the effectiveness of the proposed
Uformer-ICS, demonstrated its superiority over existing deep
learning-based CS methods, and proved its tremendous potential
for scalable sampling and reconstruction.
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