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Among solutions to the tasks of indoor localization and reconstruction, compared with traditional SLAM
(Simultaneous Localization And Mapping), learning-based VO (Visual Odometry) has gained more and more
popularity due to its robustness and low cost. However, the performance of existing indoor deep VOs is still
limited in comparison with their outdoor counterparts mainly owing to large areas of textureless regions
and complex indoor motions containing much more rotations. In this paper, the above two challenges are
carefully tackled with the proposed SEOVO (Semantic Epipolar-constrained Online VO). On the one hand,
as far as we know, SEOVO is the first semantic-aided VO under an online adaptive framework, which
adaptively reconstructs low-texture planes without any supervision. On the other hand, we introduce the
epipolar geometric constraint in an implicit way for improving the accuracy of pose estimation without
destroying the global scale consistency. The efficiency and efficacy of SEOVO have been corroborated by
extensive experiments conducted on both public datasets and our collected video sequences.
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1. Introduction

With the development of various 3D visual perceptual tasks such
as smart homes, 3D indoor navigation and Augmented Reality (AR),
accurate localization [1] and high-quality 3D indoor reconstruction [2]
have been turning into two fundamental tasks of great concern. In
recent years, visual SLAM has been developed rapidly as an excellent
solution to both tasks, and is successfully applied to various mobile re-
construction platforms, such as the mobile robot, the mobile backpack
and the micro UAV (Unmanned Aerial Vehicle).

As an indispensable part of visual SLAM, VO (Visual Odometry) is
responsible for calculating the camera pose between adjacent frames
and recovering the local map. According to the optimization frame-
works adopted, existing VO schemes mainly fall into two categories,
the traditional ones and the learning-based ones. Next, we will analyze
both schemes and summarize their limitations.

The traditional VO schemes suffer from low-level manual features,
which are fragile to illumination variations and texture distributions.
Nearly all of the classic SLAM systems are built on the golden rule
of feature correspondence [3,4] and often perform reliably in ideal
environments with rich textures. However, the robustness of these

point-based SLAM systems in low-texture regions needs to be improved.
Later, line-based SLAMs [5-7] and plane-based SLAMs [8,9] came into
existence. However, the former ones rely on the line descriptors which
are time-consuming in extraction while the latter ones usually assume
that the camera poses are known. Also, their utilized line (plane)
features are still low-level and handmade, leading to the extractions
of lines and planes being vulnerable to occlusion and the damage of
edge patterns.

Existing learning-based VO schemes usually have limitations in gen-
eralization abilities whether they are supervised or not. Compared with
traditional VOs, they extract high-level features through convolutional
networks and jointly learn the prediction of monocular depth and
ego-motion, showing excellent performance in locating and mapping.
However, the majority of them are based on offline learning. Accord-
ingly, they optimize network models on the training data and inference
on the testing data with model parameters fixed. Thus, the performance
of these offline VOs will significantly decrease when working in new
scenes different from the training set.

In addition, few learning-based VO methods pay attention to the
challenging indoor environments which bring difficulty to the regression
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of depths and poses due to the low-texture regions and complex indoor
motions. Thus, the indoor performance of learning-based VOs is still
limited. Besides, although there exist several unsupervised methods
leveraging semantic information [10-13] for monocular depth estima-
tion, they either rely on pretrained semantic segmentation networks
with fixed weights or need manually labeled class labels for multi-task
training. Last but not least, most existing self-supervised VOs guide
their optimization mainly based on the traditional photometric loss but
ignore the geometric relationships in the scene, which greatly limits
their performance for pose estimation.

On account of the aforementioned limitations, we aim to deal with
the indoor challenges by introducing both the semantic and the geomet-
ric information of indoor scenes and improve the generalization ability
of the learning framework through online optimization. Specifically,
we propose an online adaptive VO with semantic assistance under
an implicit epipolar constraint, namely SEOVO (Semantic Epipolar-
constrained Online VO). To our best knowledge, SEOVO is the first
online monocular deep VO with semantic assistance. In summary, our
contributions are mainly threefold:

1. The first semantics-aided VO following an online adaptive frame-
work, SEOVO, is proposed. Different from offline training
schemes which inference on the testing data with the model
parameters fixed, SEOVO is optimized under an online meta-
learning framework [14,15], adapting itself to every new frame.

2. A novel epipolar constrained photometric loss is designed to
implicitly introduce the epipolar geometric constraint free of
the scale uncertainty problem to guide the pose regression.
Considering that the epipolar pose solved based on epipolar
geometry suffers from scale ambiguity, SEOVO determines its
scale by aligning it with the predicted pose to construct this
newly designed photometric loss for pose estimation instead of
explicitly taking it as pose supervision.

3. A “multi-grad” map fusing the gradients embedded with the
photometric, the semantic and the geometric information is de-
signed. Compared with the single photometric gradient map, this
fused gradient map can better distinguish different instances,
especially in textureless regions. Additionally, the “multi-grad”
map can be of great benefit in ensuring a sharp depth map along
the object edges. To make our results reproducible, our codes
and data are available at https://cslinzhang.github.io/SEOVO/
SEOVO.html.

The remainder of this paper is organized as follows. Section 2 intro-
duces related studies. Section 3 provides some preliminary knowledge
for better understanding this article. Details of the proposed SEOVO are
presented in Section 4. Experimental results are reported in Section 5.
Finally, Section 6 concludes the paper.

2. Related work
2.1. Self-supervised depth and pose estimation

Early works of depth estimation [16,17] are mostly supervised
and achieve excellent performance, but it is expensive to capture
ground-truth data in many real-world scenes. Compared with the above
schemes, jointly training the depth and pose network from unlabeled
monocular videos [18,19] shows its simplicity and effectiveness, which
attracts a lot of researchers’ interests and inspires a series of works
including ours.

The motions involved in outdoor SLAM datasets are dominated by
translations, which are easier for the pose network to regress [20].
Lately, researchers got to find that current approaches could not
achieve comparative performance on indoor datasets as outdoor ones.
To fill in this gap to some extent, a few solutions focusing on the
characteristics of indoor environments and indoor motions emerged.
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MonoIndoor++ [21,22] took a different strategy of progressively es-
timating the rotations via a residual pose module instead of directly
removing them. MovingIndoor [23] proposed an optical-flow based
training paradigm which reduced the difficulty of unsupervised learn-
ing by utilizing the results of pretrained optical-flow network as the
supervision. Zhao et al. [24] employed a differentiable two-view trian-
gulation layer to generate a sparse depth map as the self-supervision
on depth. However, their triangulated depth map is sensitive to mis-
match. CEGVO [25] proposed an end-to-end global-context-aware vi-
sual odometry an augmented-attention-enhanced block in its model to
learn the long-range dependencies and internal correlation. Work [26]
gave a concise derivation of the pure pose function and designed
a novel two-view imaging loss function for self-supervised learning.
Notably, few of the aforementioned works explicitly deal with the
challenging weakly textured scenes, which are commonly encountered
in indoor environments and have not been well coped with yet.

2.2. Solutions to low-texture environments

Most traditional visual SLAM systems are based on point features [3,
4,7]. However, in some low-texture environments, these features are
extremely sparse or distributed unevenly, leading to the degradation
or even failure of the system. Therefore, the line-based [5,6] and
the plane-based [8,9] SLAM systems were developed. Yang et al. [5]
extracted sufficient line features on the premise of ensuring real-time
performance, so as to obtain a visual SLAM with higher accuracy and
robustness. Planes were also used to reconstruct the low-texture areas.
However, these plane-based methods assume that the poses have been
provided by traditional SLAM and only focus on depth estimation.
Pop-up SLAM [9] popped the plane based on the room layout and
fused point-based and plane-based SLAM together to enhance depth
estimation. The aforementioned methods are all based on low-level
features and tend to fail when the target regions are occluded or
the boundaries are broken. Instead, Zhou et al. [23] resorted to deep
learning to capture high-level features in the scene. In their work, a
well-designed SF-Net actively propagated the sparse initial flows at
low-textured regions to the entire image. Although it improves the
performance in low-textured regions in most cases, it requires a certain
amount of sparse seeds which cannot be satisfied when low-textured
regions are relatively large. On the other side, several approaches
resorted to semantic understanding for better indoor reconstruction.
For example, Concha et al. [27] suggested using the layout of the room
to generate a prior depth map for dense mapping. But, they did not
track and update the layout, so theoretically their solution can only
work in small space.

3. Preliminaries

In this section, we provide some preliminaries for a better under-
standing of our work. Specifically, we give a brief introduction of the
common loss terms widely utilized in self-supervised VOs, which were
mainly proposed in [18,19]. These losses also motivate us to design our
optimization objectives.

Photometric loss. The photometric loss penalizes the difference be-
tween the target frame and the warped one synthesized by the pre-
dicted pose and depth. Specifically, with the target image I, and the
source image I as inputs, the network can output the local transfor-
mation matrix from the target view to the source one denoted by Tf_) s
and their individual depth maps denoted by D, and D, respectively.
The warping transformation can be formulated as:

P(0p.0p)= ——KTL (0,)D,(p:0p)K'p, )

t—s
Zp;

where K denotes the camera intrinsic matrix, Z,; is the depth of the
1

warped 3D point in the adjacent camera’s coordinate system, and p,

and p/ are the pixel coordinates before and after warping. 6, and 6p
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Fig. 1. The system pipeline of our SEOVO. The “Pose Alignment Module” introduces the geometric constraints to pose regression through the alignments of the predicted pose
while the “Semantic Extraction Module” utilizes the semantic prior to extract the low-texture planes. Also, we generate a multi-grad map G, through “Multi-grad Fusion” to

fuse the photometric, the semantic and the geometric gradients denoted by G,

denote the network parameters to be optimized from DepthNet and

PoseNet, respectively. Based on the mapping relationship in Eq. (1),
we can sample in I to obtain the warped image I by

I(p;;0p.0p) = I(p,(0p,0p)) ()]
The photometric loss calculates the distance between I, and I : as [19]:

1
Lo = o0 2 LA |[L(p) = T)(p;: 0, 0p),
=t

3
- SSIM,,/(P:§9D,9P)]

2

where V stands for the set of valid points without boundary or occluded
points. SSTM,,(-) calculates element-wise similarity between I, and
I; by the Structured Similarity (SSIM) function [28], and A can be
empirically set to 0.15 as suggested by Bian et al. [19].

Depth smoothness loss. The depth smoothness loss L,, is employed
to regularize the depth estimation, which indeed ensures the smoothing
of the depth map to be guided by the image gradient. Formally,

D (@xp(=G oo (P) - VD, (p;; 0p)) @

pEV

1
+(1=2)

1
L, =—
el

where V is the gradient operator and G, is the gradient map of the
target image calculated by G, = VI,.

Scale consistency loss. The scale consistency loss L,, constrains the
frame-to-frame depth scale to maintain a globally consistent map.
Given the source depth map D, and the synthesized one D’ generated
by the target depth map D) and the pose T{‘_}s, the scale consistency
loss is defined as:

- Ly D, 0p) = D323 0. 0p)],
<l D, (p;:0p) + D(p:0p,0p)

(5)

p:EV

4. Methodology

The overall pipeline of our SEOVO is shown in Fig. 1 and the whole
optimization process is conducted under the meta-learning frame-
work [14,15], which online fine-tunes the network models for each
coming frame. It takes consecutive frames from the monocular video as
inputs and utilizes three main networks, the DepthNet, the PoseNet, and

G,,, and G

ceo» TESpECtively.

the FlowNet to predict the depth of the target image, the relative pose
between adjacent frames and the corresponding optical flows, respec-
tively. Lying at the core of SEOVO are two innovative modules, namely
the pose alignment module and the semantic extraction module. In the
following, we will give detailed explanations to the key components of
SEOVO, the pose alignment module, the semantic extraction module,
the multi-grad fusion and the loss function, respectively.

4.1. Pose alignment module

The pose alignment module is responsible for generating the scaled
pose TS (the subscript + — s is omitted for brevity) to introduce
geometric constraints into SEOVO. Denoting the local predicted pose
from PoseNet by T, this module conducts scale alignment based on T*
to obtain TS.

As we know, compared with outdoor sequences, indoor ones contain
much more rotational motions which bring difficulty to pose regression.
We try to solve this problem with the aid of the epipolar geometric
constraint. However, owing to the scale uncertainty of this 2D-2D
constraint, the translation vector of the epipolar pose TF is usually
normalized, which is free of any scale information. In order to make T
have proper scale, we align T with the predicted one T* to produce
the scaled pose T as:

TE,  5-TE T lil
TS = [ (B o), s= ,i = argmax |TL [i] 6)
[ o” ! ] Tl ) Tl

where ng), T g) are the rotation matrix and the translation vector of T*
respectively, and T(L,) is the translation vector in TL. [i] returns the i-th
element in the translation vector T,,. Through Eq. (6), TS keeps the
reliable rotation matrix and translational direction calculated based on
epipolar constraints, while preserving the global scale at the same time.

So far, we have obtained the target TS. Then the corresponding
loss term L,,,, can be generated, which is given in Eq. (10). By this
loss term, we can ensure the multi-view geometric consistency in pose
regression.
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Fig. 2. The visualization results of the final extracted textureless planes in different
scenes. Different planes are filled with different colors.

4.2. Semantic extraction module

Considering that low-texture environment is a challenging problem

in indoor VOs, we design the semantic extraction module to extract
textureless areas so that explicit constraints can be imposed on these
regions to guarantee the reconstruction quality. Technically, we pro-
pose a coarse-to-fine extraction strategy containing two stages, namely
the coarse extraction and the fine extraction.
Coarse extraction. First, we design a screening principle based on
the “photometric overfitting” phenomenon to form a coarse set of
texturelss pixels denoted by C. Specifically, we have an interesting
insight that the photometric errors of the pixel correspondences tend
to be extremely small in textureless areas. The underlying reason is
that pixels in these areas usually have similar colors, and small photo-
metric errors can be kept even if the correspondences are mismatched,
which is called the phenomenon of “photometric overfitting”. In order
to make use of this phenomenon to help extract textureless regions,
we form a photometric error map M ,,, where M ,,,(p,) records the
photometric error of an arbitrary pixel p, in the target image I,. Then
2D points with small photometric errors are extracted by Eq. (7) to form
a coarse textureless pixel set C.

C= {pilMpha(pi)<”pho+o-pho’pie It} (7)
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where u,,, and o,,, are the mean and the variance of M, re-
spectively. Second, having obtained the sparse textureless points, we
gather the corresponding class labels of all p; in set £ based on the
segmentation map M, predicted by SegNet. Based on the assumption
that textureless regions are mostly planar segments [27], we collect
pixels whose semantic labels are in £ and divide them into different
planes according to their classes to form a coarse set of textureless
planes denoted by PC.

Fine extraction. Although the extraction strategy in the coarse stage
takes the semantic information into consideration, it is still unable to
separate textureless planes with the same semantic labels. A typical
example in indoor scenes is walls in the corner as shown in Fig. 3(b). To
deal with this problem, we further refine the coarse extraction results
in this stage. First, for each coarse region P¢ € PC, only its largest
connected region is kept to get rid of small planar regions in consider-
ation of robustness and efficiency. Then we borrow advantage of our
designed multi-grad map G ,;,, which will be introduced in Section 4.3,
to segment different instances with the same semantic labels. Thanks
to the rich edge information provided by G, the separating line
(such as the wall joint) of different instances can be easily detected
although they belongs to the same class so as to achieve a finer planar
segmentation. The final set of extracted planes is denoted by P¥ and
some visualized results are illustrated in Fig. 2, in which textureless
planes are nicely extracted and segmented so that corresponding plane
constraints can be applied.

4.3. Multi-grad fusion

In order to further improve the performance of depth estimation
in low-texture areas, inspired by the depth smoothness loss in [19],
we design a fused smoothness loss which utilizes a multi-grad map to
guide the optimization of depth with smoothness priors. Apart from the
commonly used photometric gradient map G, our proposed multi-
grad map also integrates a semantic gradient map and a geometric
gradient map denoted by G,,, and G,,, respectively to help capture
more edges consistent with perception. In detail, G,,, represents the
gradient map of the segmentation results while G,,, stands for the

geo
gradient map of a pseudo-colored position map denoted by I,,,. In I

geo* geo>

Fig. 3. Visualization of “multi-grad” maps in two typical scenes. The label “I”, “seg” and “pc” denote the original RGB image, the pseudo-color maps of the segmentation result

and that of the point clouds, respectively. Under them are the corresponding gradient maps, where “pho”, “smt”, and “geo” represent the visualization results of G

cho >
other gradient maps.

G,,, and

pho*

respectively. The final fused “multi-grad” map is marked by fuse. The red boxes represent difficult regions for edge detecting where our fused gradient map outperforms
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the 3D coordinates of all pixels are stored in the corresponding grids.
Then the geometric gradient G,,, is acquired by G,,, = V2r geor
Having obtained the multi-source gradients G ,, G, and G,,,, we
can formulate the final multi-grad gradient map G, as:
U
Gfu:e = (exP(Ggeo) + %Gsmz) * Gpho (8)

smt

where y,,, and u,,, are the mean of G,,, and G,,,, respectively, and
% is the elementwise multiplication. It can be seen from Fig. 3 that
more reasonable edges in the indoor scenes can be observed from
G, instead of G, thanks to the assistance of the semantic and the
geometric information. In addition, the edges detected in G ,,, are also
used in the fine stage of the semantic extraction module discussed in
Section 4.2 to obtain more accurate segmentation results of textureless
planes.

During training, the fused gradient map G, is of great importance
in two aspects. On the one hand, G ,,, can be utilized in the semantic
extraction module to select more accurate textureless planes, based on
which the semantic loss L,,, (Eq. (11)) can be generated. On the other
hand, G, is the input of the smoothness loss L, (Eq. (12)), making
L, better guide the optimization of the depth map to ensure sharper
edges in it.

4.4. Loss function

The overall loss function of our SEOVO is given as:
Ly01a1(@p>0p) =Leppo(0p, 0p) + w; Ly (6, 0p)
+ wy L (0p,0p) + w3 L, (Op)

©)]

where L,,,, is the epipolar constrained photometric loss, L,,, is the
semantic loss, L, stands for the fused smoothness loss, and L, refers
to the scale consistency loss, which was proposed in [19]. The hyper-
parameters are set to w; = 0.5, w, = 0.1 and w; = 0.5. 6, and 6, denote
the network parameters to be optimized from DepthNet and PoseNet,
respectively. Among all loss terms, L, has been given in Eq. (5). Next,
we will introduce the other three loss terms in detail.

Epipolar constrained photometric loss term. L,,,, forces PoseNet to
regress pose under the epipolar geometric constraint. However, directly
penalizing the distance between T and T', which is considered as
an explicit strategy to impose the epipolar geometric constraint on
PoseNet, shows poor performance in regressing the translation motion.
The underlying reason is that the depth range of indoor sequences
varies a lot across different frames, and thus the scale of T° will also
change abruptly. Instead, we propose L,,,, to avoid unstable scales,
and to implicit impose the epipolar constraint on pose regression. Tech-
nically, similar to Eq. (3), L., penalizes the pl}otometric inconsistency
between I, and the synthesized target image I, which is warped from
I, based on T and output depth D,. Formally,

Lon0p.0p) = w5 3 12|16 = 1,(p,2605.0p)],
pEV

+a-nz SSIM’;(P’;GD’GP)] (10)
s 1 -
Li(p:65.0p) = 1,(Z—KT*(0p)D/(p:0p)K™'p,)

by

where Z; is the depth of the 3D point warped by T¥ in adjacent cam-
era’s coordinate system, SSIM(-) calculates element-wise similarity
between I, and I,, and 4 is set to 0.15.

Semantic loss. Weakly textured places are difficult to be well recon-
structed due to the lack of photometric features. To cope with this
problem, we apply L,,, to enforce the surface points in a planar region
to share the same normal direction:

Lo(0p.0p)= Y HUar(N(PH(GD,GP)))“z

pHepH

+# > oy HVD,@”;@D)\E

pHept ptlept

(1)
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Table 1

Specification of our collected dataset.
Sequence Resolution RGB Depth
Lab 640 x 480 856 856
Corridor 848 x 480 2021 2021

where N'(PH) returns the normal map of P, var(-) calculates the
channel-wise variances of the given normal map, and N is the number
of all pixels recorded in P¥.

Fused smoothness loss. Different with the commonly used smoothness
loss term Ly, introduced in Eq. (4), our fused smoothness loss L,
better guides the optimization of depths, relying on our multi-grad
map G, instead of G,,,, which introduces richer edge information
consistent with perception. Specifically, L, is given as:

Ly(0p) = m D (€xp(=G 15 (p)) - VD, (P 0p)). 12
pEV

5. Experimental results
5.1. Experimental setup

Implementation details. All experiments in this paper were conducted
on the same desktop computer equipped with a GPU of NVIDIA GeForce
RTX 3070. The training and evaluation codes of SEOVO were imple-
mented using PyTorch. Our SEOVO can process the input data set
at about 10FPS. As for network architectures, we borrowed FlowNet
from [24] and used the same PoseNet and DepthNet as [19]. Also, the
pre-training of FlowNet follows the same training process as in [24]
while the pre-training of PoseNet and DepthNet follows [19]. In terms
of SegNet, we employed the unsupervised image segmentation net-
work in [29] and this segmentation network strictly follows the online
learning framework via back propagation. It can quickly complete the
training process online without pre-training and generate semantic
segmentation results for each input image. This online self-supervised
network does not rely on semantic labels as input and exhibits better
generalization capability, enabling us to handle textureless regions
effectively. All images were resized to 320 x 256 and then fed to
SEOVO in time order. The weights of network models were initialized
by the pretrained weights on the NYUv2 dataset [30]. The initialized
weights of FlowNet and SegNet are frozen while those of DepthNet and
PoseNet are tuned during training. During online training under the
meta-learning framework proposed in [14,15], the Adam optimizer was
used with 10~ as the initial learning rate.

Datasets. First, we evaluated our proposed SEOVO on two public
indoor datasets, RGB-D 7-scenes [31] and ScanNet [32]. Then to bet-
ter confirm the benefits of our SEOVO in textureless environments,
we also collected two video sequences, namely “Lab” and “Corridor”
respectively, by a Realsense d453i camera for online testing. These
sequences include large areas of texturelss regions which are difficult
to be handled by existing deep VO schemes. The content and scale of
this dataset are given in Table 1. All the utilized datasets provide RGB
sequences and the associated depth maps. In addition, public datasets
also provide frame-to-frame poses for evaluating the accuracy of pose
regression. Considering that we follow an online learning framework,
we took the official training splits of NYUv2 dataset [30] as the training
set. As for the testing set, we evaluated all online methods on the typical
sequences of public datasets [31,32] as well as all of our collected data
with online fine-tuning.

Evaluation metrics. The evaluation of SEOVO mainly focused on two
aspects, the performance on depth estimation and pose estimation. For
the evaluation of depth estimates, we followed [19] to use the mean
absolute relative error (AbsRel), the root mean square error (RMS), and
the accuracy under threshold (o; < 1.25,i = 1,2,3) as metrics.
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Table 2

Characteristics of related self-supervised VO methods.
Methods Optimization Cues

Photometry Geometry Semantics

SC-SfMLearner [19] offline v X x
Monolndoor++ [22] offline \/ X X
TrianFlow [24] offline v v X
CEGVO [25] offline v v X
GeoConst [26] offline v v X
SC-onlinel8 online v X X
Trian-online online v v x
OnlineVO [15] online \/ \/ X
SEOVO (ours) online v v v

To measure the accuracy of the output poses, we selected two

widely used metrics in measuring the SLAM trajectory, the Absolute
Pose Error (APE) and the Relative Pose Error (RPE). Specifically, we
applied the above two pose metrics on both the translation (/m) and the
rotation components (/°), represented by APE, |, APE, |, RPE, |, and
RPE, |. The subscript “¢”” corresponds to the translation component
while “/” indicates the rotation one.
Compared methods. We compared our SEOVO with some typical
self-supervised VO methods, including SC-SfMLearner [19], Monoln-
door++ [22], TrianFlow [24], CEGVO [25], and GeoConst [26]. Con-
sidering that there are few public online VO methods, we extended
offline works [19,24] which are closely related to our SEOVO to the
online versions for comparison, denoted by SC-onlinel8 and Trian-
online, respectively. Technically, these extended online schemes were
optimized based on the same network architectures and loss functions
as their original works, but under an online framework. In general, we
give the characteristics of the above methods in Table 2. It can be seen
from Table 2 that only our SEOVO combines the photometric, geomet-
ric and semantic cues mined from the input images under an online
adaptive optimization framework. This fusion technique accounts for
our outstanding performance on estimation accuracy.

5.2. Quantitative experiment

Depth estimation on public datasets. We first present the quanti-
tative depth estimation results of our SEOVO and several offline or
online competitors on 7-scenes and ScanNet in Table 3 and Table 4.
From the results presented in the above tables, we make the follow-
ing observations. First, both the offline SC-SfMLearner and TrianFlow
underperform their online variants SC-onlinel8 and Trian-online, re-
spectively, which implies the superiority of online learning in gener-
alization. Second, SEOVO shows an overwhelming performance over
other competitors in nearly all scenes owing to the fact that it integrates
the geometric structure and the semantic layout of the scene under an
online optimization framework.

Depth estimation on our dataset. To demonstrate the performance
of SEOVO in tackling the challenging environment with weak textures,
we also conducted experiments on our collected testing data containing
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SC-onlinel8

OnlineVO

SEOVO
(ours)

GT

Fig. 4. Depth estimation results on the 7-scenes dataset. Thanks to our two innovated
modules introducing the semantic and geometric information, SEOVO performs favor-
ably compared to other competitors in better prediction results and preserves sharper
edges.

large areas of textureless regions. To directly evaluate on our testing
sequences, we compared our SEOVO with online schemes free of fine-
tune training and give their evaluation results in Table 5. It can be seen
from Table 5 that our scheme exhibits clear performance advantages
over all counterparts on this challenging dataset owing to the semantic
loss which directly constrains the depth regression in the textureless
regions.

Pose estimation on public datasets. To evaluate the accuracy of
our visual odometry for pose estimation, we first aligned the out-
put trajectories predicted by our SEOVO and typical competitors to
the ground truth trajectories respectively. And then we measured the
aligned results based on the four metrics mentioned in Section 5.1.
The results on 7-scenes, ScanNet are reported in Table 6 and Table 7,
respectively. Whether from the absolute metrics or the relative ones,
our SEOVO gives the most accurate pose estimations. The underlying
reason is that our epipolar constrained photometric loss guides SEOVO
to optimize the estimated pose under the epipolar geometric constraint
and to maintain the scale consistency at the same time.

5.3. Qualitative experiment

Visualized depth maps. In order to qualitatively examine our per-
formance in depth regression, depth estimation results on 7-scenes of

Table 3
Quantitative comparison on depth estimation with related methods on the 7-scenes dataset.
Methods/Scenes Chess Fire Heads Office Pumpkin RedKitchen Stairs
AbsRel] o) 1 AbsRell o 1 AbsRell o, 1 AbsRel] o) 1 AbsRell o 1 AbsRell o, 1 AbsRel] o) 1
SC-SfMLearner [19] 0.103 0.880  0.089 0916  0.124 0.862  0.096 0.912  0.083 0.946 0.101 0.896  0.106 0.855
Monolndoor++ [22]  0.097 0.888  0.077 0.939 0.106 0.889  0.083 0.934 0.078 0.945 0.112 0.893  0.139 0.821
Offline  TrianFlow [24] 0.114 0.817  0.107 0.874  0.173 0.755  0.126 0.848  0.112 0.893  0.139 0.821 0.167 0.746
CEGVO [25] 0.104 0.866  0.082 0.925 0.114 0.906  0.091 0.918  0.089 0911  0.927 0.900 0.108 0.859
GEOConst [26] 0.096 0.843  0.080 0.931 0.100 0.901  0.093 0.922  0.112 0.899  0.099 0.909 0.103 0.855
SC-onlinel8 0.098 0.882  0.080 0.919  0.099 0.912  0.086 0.934 0.124 0.868  0.100 0.899  0.106 0.871
Online Trian-online 0.107 0.867  0.091 0.907  0.102 0.908  0.096 0.913  0.101 0.904 0.117 0.871  0.129 0.831
OnlineVO [15] 0.101 0.878  0.079 0912 0.132 0.884  0.100 0.900 0.123 0.893  0.098 0.903  0.129 0.829
SEOVO (ours) 0.091 0.892 0.075 0.941  0.097 0.925  0.080 0.936  0.103 0.901  0.088 0.917  0.097 0.876
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Table 4

Quantitative comparison on depth estimation with related methods on the ScanNet dataset.
Scenes 000000 0059.00 0101_04 0106_00 0169_00 0181.00 0241_00

AbsRel | o1 AbsRel | o 1 AbsRel | o 1 AbsRel | o 1 AbsRel | o 1 AbsRel | o 1 AbsRel | o 1

CEGVO [25] 0.068 0.949 0.095 0.904 0.103 0.891 0.166 0.761 0.104 0.883 0.223 0.669 0.109 0.877
GeoConst [26] 0.074 0.940 0.099 0.906 0.105 0.884 0.173 0.754 0.102 0.890 0.187 0.718 0.103 0.901
SC-onlinel8 0.066 0.954 0.100 0.895 0.096 0.909 0.163 0.769 0.101 0.889 0.189 0.722 0.103 0.896
Trian-online 0.065 0.956 0.109 0.882 0.126 0.882 0.181 0.747 0.109 0.865 0.186 0.722 0.160 0.878
OnlineVO [15] 0.066 0.952 0.122 0.849 0.102 0.903 0.159 0.770 0.113 0.862 0.186 0.715 0.117 0.888
SEOVO (ours) 0.061 0.956 0.094 0.912 0.093 0.911 0.150 0.775 0.096 0.905 0.153 0.771 0.089 0.926

SC-onlinel8

OnlineVO

SEOVO (ours)

Fig. 5. Illustration of the point clouds synthesized by the poses and depths generated by the online baseline SC-onlinel8, OnlineVO and our SEOVO on the 7-scenes dataset. To
show the global consistency of the estimation, we warp the maps of several consecutive keyframes to a unified global coordinate system for a more complete model.

Table 5
Quantitative comparison with online methods on our collected dataset.
Scene Method AbsRel| RMS| o 1 o, 1 o3 1
SC-onlinel8 0.118 0.720 0.872 0.991 0.995
Lab Trian-online 0.155 0.955 0.786 0.948 0.986
OnlineVO [15] 0.119 0.765 0.867 0.992 0.997
SEOVO (ours) 0.113 0.708 0.893 0.996 0.999
SC-onlinel8 0.139 0.776 0.837 0.970 0.989
. Trian-online 0.176 0.958 0.808 0.937 0.969
Corridor .
OnlineVO [15] 0.146 0.815 0.827 0.967 0.988
SEOVO (ours) 0.137 0.752 0.844 0.972 0.990

our SEOVO and other competitors are visualized in Fig. 4. Besides, the
ground truth depths denoted by “GT” are also provided as reference.
It can be clearly seen from Fig. 4 that our depth maps are closer to
the ground truth maps, which is in line with our quantitative results
in Table 3. Besides, our depth maps have sharper edges thanks to our
multi-grad maps.

Reconstruction results. To show the performance of our SEOVO in
both depth estimation and pose regression qualitatively, some typical
results of the point clouds synthesized by poses and depths output from
SC-online18, OnlineVO and our SEOVO are offered in Fig. 5. In detail,
for the completeness of maps, we transformed the synthesized point
clouds from several consecutive frames (usually 3 to 5 keyframes) to a
unified global coordinate system which takes the first frame as refer-
ence. It can be seen from Fig. 5 that the results of other two competitors
have obvious misalignments among frames while our SEOVO best keeps
the consistency of global maps, corroborating the claim that our scheme
produces the most accurate depths and poses.

5.4. Ablation study of loss terms

We demonstrate how the two important loss terms, the epipolar
constrained photometric loss and the semantic loss in our loss function
affect the results by comparing SEOVO with its two variants, EOVO and
SOVO. Specifically, compared with SEOVO, EOVO is optimized without

the semantic loss L,,, while SOVO is without the epipolar constrained
photometric loss L,,,. Furthermore, to verify the effectiveness of the
implicit strategy adopted by L we constructed another competitor

epho>
using explicit epipolar constraints named SEEOVO which replaces L,
2
with the direct pose supervision L,, = ‘TL -T5 5 where T' is the

predicted pose and T is the scaled pose aligned with T in scale.
Table 8 and Table 9 tabulate the quantitative results of SEOVO
and its rivals for depth estimation and pose estimation, respectively. In
Table 8, we adopted the first-best (black bold) and second-best (blue
bold) highlighting in Table 4 These two tables demonstrate that our
SEOVO outperforms other variants for both depth and pose regression
except in the “Stairs” scene. The reason of our unsatisfactory perfor-
mance in this scene lies in the strong reflection of sunshine on the stairs,
which coincides with our failure cases analyzed in Section 5.5. Techni-
cally, EOVO imposes the geometric constraints on pose regression while
SOVO guarantees the performance in textureless regions with semantic
assistance. Compared with them, SEOVO combines both geometric and
semantic cues, undoubtedly achieving the best performance. Besides,
there is an interesting finding that SEEOVO performs worst in most
scenes, which validates our analysis in Section 4.4 that explicitly
introducing epipolar constraints will lead to unsatisfactory predictions.
In addition to the quantitative comparison, Fig. 6 qualitatively
shows the reconstruction results of SEOVO and its variants, SOVO and
EOVO, on our collected dataset. The synthesized point clouds of SC-
onlinel8, which utilizes neither geometric constraints nor semantic
priors, are also given in Fig. 6 as the baseline. For clearer observations,
we provide both the top and the front views of these maps. It can be
clearly seen from the top view in Fig. 6 that SOVO achieves remarkable
results in reconstructing the geometric structures of low-texture regions
only inferior to our SEOVO, demonstrating the effectiveness of the
semantic loss which enforces the extracted surface points to be on the
same plane. However, it fails to output poses with high accuracy, thus
generating obvious misalignments among frames as clearly shown in
the front view. On the other hand, although EOVO guarantees the pose
accuracy by the epipolar geometric constraint introduced in L,,p,, it
still highly relies on the photometric consistency to guide the depth
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Table 6
Quantitative comparison on pose estimation with related methods on the 7-scenes dataset.
Methods/Scenes Chess Fire Heads Office Pumpkin RedKitchen Stairs
APE, APE,  APE, APE, APE,  APE, APE,  APE, APE, APE,  APE, APE, APE,  APE,
SC-SfMLearner [19] 0.416  11.774 0.496 29.478 0.176  26.431 0.311 33.455 0.379  23.744  0.229 18.878 0.533 159.473
MonoIndoor++[22] 0.288  8.658 0.477  25.469  0.164  26.334  0.254  29.647 0.374  21.156  0.265 16.024 0.439  50.612
Offline  TrianFlow [24] 0.457 12.035 0.302 60.459 0.182  43.651 0.425  41.623 0.377  25.491  0.301 24.389 0.513  89.435
CEGVO [25] 0.388  9.654 0.404  36.431 0.149  33.854 0.229  30.016 0.256  14.764  0.187 15.213 0.648  49.342
GEOConst [26] 0.325  5.492 0.331 44.226  0.134  23.412 0.195  27.853 0.278 19.855  0.205 18.247 0.355  37.561
SC-onlinel8 0.318 10.457 0.397 24.039 0.148 23.482 0.189 25717 0.244  7.840 1.074 13.025 0.410 101.35
Online Trian-online 0.443 15781 0.460 60.016 0.166 17.384  0.435  31.052 0.495 38235 0.263  36.75 0.756  29.731
OnlineVO [15] 0.278  4.678 0.338  25.191 0.144 16.944 0.190  26.255 0.204 10.260  0.178 12.431 0.394  57.758
SEOVO (ours) 0.246  4.385 0.284 23.111 0.125 13.567 0.151 21.483 0.185 7.437 0.169 10.758 0.303  22.852
Table 7
Quantitative comparison on pose estimation with related methods on the ScanNet dataset.
Scenes 0000_00 0059_00 0101_04 0106_00 0169_00 0181_00 0241_00
RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE,
CEGVO [25] 0.145 3.897 0.175 9.475 0.209 10.337 0.205 9.730 0.290 3.967 0.225 10.305 0.135 6.895
GeoConst [26] 0.142 3.792 0.176 9.396 0.214 10.169 0.204 9.949 0.267 3.337 0.244 14.149 0.137 6.244
SC-onlinel8 0.144 3.783 0.176 9.482 0.208 10.107 0.204 10.068 0.284 3.742 0.245 13.252 0.133 6.723
Train-online 0.137 3.417 0.183 9.432 0.216 10.240 0.193 8.892 0.246 4.274 0.245 13.194 0.135 5.979
OnlineVO [15] 0.143 3.878 0.180 9.502 0.213 9.082 0.206 9.693 0.273 3.441 0.230 13.753 0.136 6.228
SEOVO (ours) 0.131 3.076 0.173 9.225 0.202 9.057 0.086 7.877 0.272 3.402 0.206 6.572 0.132 5.719
Input SC-onlinel8 (Baseline) SOVO EOVO SEOVO (Ours)

Fig. 6. Comparison of the maps reconstructed by the online baseline SC-onlinel8 and our two variants on our collected dataset. To clearly demonstrate the reconstruction results

in textureless regions, we provide both the top views and the font views in each block.

Table 8
Performance of networks trained with various combinations of loss terms on the 7-
scenes and our collected dataset.

Scenes EOVO SOVO SEEOVO SEOVO
AbsRell o, 1 AbsRell o 1 AbsRell o, 1 AbsRell o, 1

Chess 0.096 0.883 0.097 0.882 0.104 0.876 0.091 0.892
Fire 0.087 0.911 0.086 0.917 0.090 0.903 0.075  0.925
Heads 0.100 0.913 0.101 0.916 0.103 0.901 0.097 0.925
Office 0.087 0.930 0.092 0.926 0.091 0.920 0.080  0.936
Pumpkin 0.127 0.874 0.128 0.873 0.132 0.831 0.103  0.901
RedKitchen 0.095 0.910 0.108 0.885 0.118 0.872 0.088  0.911
Stairs 0.102 0.888 0.115 0.857 0.134 0.833 0.097 0.876
Lab 0.120 0.861 0.121 0.860 0.122 0.870 0.113 0.893
Corridor 0.142 0.832 0.158 0.802 0.147 0.821 0.137 0.844

optimization, which is unreliable in low-texture regions and thus causes
the poor reconstruction quality of these places. Fortunately, our SEOVO
integrates both the geometric cues and the semantic ones in the scenes,
generating the best reconstruction results observed from both the front

view and the top view. These results lead us to express the belief that

Table 9

Quantitative comparison of different variants on the 7-scenes dataset for pose estimation.
Scenes EOVO SOVO SEEOVO SEOVO

RPE, RPE, RPE, RPE, RPE, RPE, RPE, RPE,

Chess 0.047 1.437 0.501 1.525 0.068 2.020 0.040 1.211
Fire 0.074 2627 0.080 2.549 0.072 2.485 0.054 2.087
Heads 0.026 1.699 0.026 1.542 0.028 1.618 0.024 1.370
Office 0.033 1.586 0.037 1.734 0.041 1.856 0.033 1.582
Pumpkin 0.074 1.152 0.072 1.137 0.092 1.398 0.067 1.085
RedKitchen 0.040 1.095 0.043 1.083 0.041 1.167 0.038 1.074
Stairs 0.239 1.793 0.195 1.868 0.109 1.990 0.172 1.945

the loss function of SEOVO is well designed and both L,,,, and L,

play essential roles in it.
5.5. Failure case analysis

By observing and analyzing the experimental results, we found that
the illumination and reflection of the scene have an obvious influence
on SEOVO’s performance. For example, when the surface of an object
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SEOVO GT

Input image

Fig. 7. Depth estimation of failure case with the complex reflection owing to the glass
and the mirror. In detail, the glass part is hard to distinguish and recover the true
depth while the artifacts in the mirror is mistaken for the objects with real depth.

surface is made of strongly reflective materials such as glass or mirror,
the information contained in the corresponding area of the image
is relatively confusing. Actually, with complex reflections, the basic
assumption of the photometric consistency is violated and the impact of
noises will be more notable. This problem poses a challenge to SEOVO
in extracting high-quality features and the correspondences generated
by FlowNet tend to be mismatched, resulting in poor performance as
shown in Fig. 7. It can be seen from Fig. 7 that the glass window in
front of the artwork is hard to be reconstructed while the artifacts in
the mirror cause the pseudo depths.

6. Conclusion

In this paper, we studied a practical problem, the indoor deep visual
odometry which is of great significance in visual perception tasks such
as AR, indoor navigation and smart homes. Considering the limitations
of existing methods in accuracy and generalization ability, we proposed
a fully self-supervised solution under an online adaptive framework
namely SEOVO. To the best of our knowledge, we are the first to
introduce semantic assistance under an online framework to make full
use of the semantics of each new frame. For the indoor localization task,
we introduce the epipolar geometric constraint in an implicit manner
to keep the global scale consistency, which accounts for our superiority
in trajectory prediction compared with other VO schemes. In terms of
the reconstruction task, our newly designed multi-grad map is of great
importance in capturing the complex edge information even in diffi-
cult weakly-textured areas, which enables our SEOVO’s overwhelming
performance in indoor 3D reconstruction. In conclusion, the success
of our SEOVO demonstrates that multiple cues, such as photometric
information, geometric structures and semantics can compensate each
other to handle challenging indoor scenes, and online learning has great
potential to narrow the performance gap of a network between the
training and the testing phrases.

Application field. Online VO/SLAM is crucial in various fields, en-
hancing both navigation and environmental understanding. One promi-
nent application is in robotics, where autonomous robots and drones
utilize SLAM for real-time mapping and navigation in dynamic envi-
ronments, allowing them to operate effectively in unstructured spaces.
In the realm of augmented reality (AR) and virtual reality (VR), our
produced pose and depths play a vital role by enabling devices to
accurately track their position relative to the real world, ensuring
virtual objects are seamlessly integrated into the user’s environment.
Similarly, in smart homes, robotic vacuum cleaners employ online
SLAM to create efficient cleaning paths and adapt to changing room
layouts.

Limitations and future work. Though SEOVO can work well in most
cases, its performance is still not satisfactory when working in envi-
ronments with complex reflections as analyzed in Section 5.5. In our
future work, we will continue to devote our efforts to this area. For
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instance, considering that the assumption of multi-view appearance
consistency does not hold under this circumstance, the real Euclidean
space can be decomposed into multiple virtual subspaces, in which the
multi-view consistency can be satisfied. Based on this hypothesis, we
will replace the single output depth map of DepthNet with multi-space
outputs. Based on these subspace depths and the predicted pose, we can
synthesize the multi-space photometric maps and perform a weighted
sum of them to get the final image. Fortunately, several reflection
datasets are publicly available to support the training.
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