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 A B S T R A C T

Diffusion models have achieved promising results in image generation, but their applications in 3D object 
detection still need further exploration. In this paper, we design a novel model DiffCandiDet based on 
dense heads with Gaussian distributed center points for 3D object detection, which effectively integrates 
the anchor-based method and the Gaussian random noise-based method to leverage the powerful denoising 
and reconstruction capabilities of the diffusion model. To achieve the learning balance for multi-class 3D 
object detection, we propose a Dynamic Super-dense Candidate Boxes (DSCB) strategy. Notably, DiffCandiDet 
addresses the issue of traditional models struggling to detect pedestrians walking side by side. In addition to 
Gaussian distribution, we also propose a DSCB strategy based on discrete uniform distribution (DUCandiDet) 
and continuous uniform distribution (CUCandiDet), to reduce the runtime consumption and enhance the 
robustness of the model. Extensive experiments show that DiffCandiDet achieves competitive results on both 
KITTI and Waymo Open Datasets. DiffCandiDet ranks 1st on the KITTI validation set in the Car and Pedestrian 
detection leaderboard. Code is available at https://github.com/SiHengHeHSH/DiffCandiDet.
1. Introduction

3D object detection based on LiDAR point clouds [1–5] plays a 
crucial role in autonomous driving. The mainstream approaches for 
LiDAR-based 3D object detection  [6–9] can be broadly categorized into 
anchor-based [10–16] and anchor-free [17–19] methods. The anchor-
based method typically predefines a set of templates (anchors) with 
fixed sizes and evenly spaced positions and orientations to leverage the 
common characteristic of real objects with similar sizes. The anchor-
free methods can be flexibly applied to diverse views without intro-
ducing additional shape priors. However, compared to anchor-based 
methods that only select high IoU (Intersection over Union) samples, 
anchor-free methods [18] may select some bad positive samples, lead-
ing to inaccurate object predictions. Among anchor-based methods, 
two-stage anchor-based methods [20,21] have demonstrated significant 
advantages in detection accuracy, which refine the predicted boxes 
by introducing a RoI (Region of Interest) network based on the one-
stage methods [10,22]. Moreover, multi-modal anchor-based 3D object 
detection [23,24] involves the fusion of information from images and 
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LiDAR point clouds, further maintaining a leading position in detection 
performance.

Furthermore, existing 3D object detection methods have recently 
demonstrated state-of-the-art Car detection performance, e.g.
PV-RCNN [12], Voxel-RCNN [25], CasA [21] and LoGoNet [23]. How-
ever, their performance on the Pedestrian and Cyclist categories is 
suboptimal when extended to multi-class 3D object detection [21,23], 
as shown in Fig.  1. For instance, the traditional anchor-based method 
CasA-V [21] fails to detect pedestrians walking side by side, as shown in 
the first and third columns of Fig.  9. Especially in dense scenarios where 
the Pedestrian and Cyclist are clustered together, mutual occlusion and 
overlapping may lead to missed detections, which poses a significant 
safety risk for autonomous driving.

Recently, diffusion models [26–30] have achieved considerable suc-
cess in image and text generation. However, their application in percep-
tion tasks is still an area under exploration. DiffusionDet [31] pioneers 
the application of diffusion models in 2D object detection [32] tasks, 
treating 2D candidate boxes (𝑥, 𝑦, 𝑤, ℎ) as Gaussian noise as shown 
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Fig. 1. DiffCandiDet outperforms all the baseline PV-RCNN, Voxel-RCNN, CasA+V, TED-M, and LoGoNet by a large margin on the KITTI val set, especially on the Pedestrian and 
Cyclist categories with AP calculated by 40 recall positions. The orange parts represent the improvements by adding DiffCandiDet.
Fig. 2. Diffusion model for 2D and 3D object detection. (a) A diffusion model where 𝑞 is the forward process and 𝑝𝜃 is the reverse process. (b) Diffusion model for 2D object 
detection (DiffusionDet). (c) Diffusion model for 3D object detection (Diff3Det). (d) We formulate 3D object detection as a denoising diffusion process based on Dynamic Super-dense 
Candidate Boxes with Gaussian distributed center points.
in Fig.  2(b). Diff3Det extends DiffusionDet to 3D object detection by 
projecting 3D detection boxes onto the Bird’s Eye View (BEV) to obtain 
BEV 2D boxes. The five dimensions (𝑥, 𝑦, 𝑙, 𝑤, 𝜃) of these boxes are 
treated as Gaussian noise within the feature range as shown in Fig.  2(c). 
Since the BEV features tend to the global representation, simply treating 
all five degrees of freedom of the projected detection box as Gaussian 
noise and aggregating BEV features of the corresponding boxes by 
RoIAlign [33] will increase the complexity of feature extraction.

Based on the above observations, in this paper, we propose a novel 
model DiffCandiDet based on dense candidate boxes with Gaussian 
distributed center points (GDCP) to leverage the powerful denoising 
and reconstruction capabilities of the diffusion model. Instead of fixing 
the 2D center point coordinates (𝑥 and 𝑦) of candidate boxes, we 
model them to follow a Gaussian distribution within the boundary 
range of the BEV map. DiffCandiDet achieves the dual objective of 
incorporating the Gaussian randomness of the diffusion model while 
preserving the height, shape, and orientation characteristics of dense 
candidate boxes. Compared to traditional anchor-based methods such 
as Voxel-RCNN [25] and CasA+V [21], DiffCandiDet introduces the 
iterative denoising process of diffusion models into 3D object detection, 
incorporating initial randomness. Since the model learns the mapping 
2 
from randomly initialized bounding boxes to ground truth boxes, each 
step of the iterative inference becomes more accurate, resulting in en-
hanced generalization capability and superior detection performance. 
As illustrated in Fig.  3, the comparative analysis between DiffCandiDet 
and anchor-based methods (Voxel-RCNN and CasA+V) reveals two 
critical advantages of our approach:

(1) Error Tolerance via Multi-Step Refinement: The iterative de-
noising process of the diffusion model progressively rectifies detection 
inaccuracies through multi-step optimization, significantly enhancing 
robustness to initialization errors.

(2) Feature Consistency through Geometric Proximity: Anchors ini-
tialized closer to ground truth (GT) boxes exhibit higher spatial feature 
alignment (measured by IoU-driven similarity metrics), which reduces 
the learning objective’s complexity by constraining the solution space.

This dual mechanism of probabilistic refinement and geometry-
aware initialization collectively addresses the limitations of conven-
tional anchor-dependent frameworks. Besides, the conventional anchor-
based methods need a one-to-one correspondence between the BEV 
features and the positions of fixed candidate boxes, while GDCP are 
distributed at arbitrary positions within the voxel grids instead of 
the central locations of voxel grids. To address this, we employ the 
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Fig. 3. Compared to conventional anchor-based methods, the iterative denoising 
mechanism of diffusion models progressively rectifies detection errors through multi-
step optimization, thereby achieving superior error tolerance and geometric consistency 
compared to rigid anchor initialization strategies.

bilinear interpolation [12] to represent the features of center points as 
a weighted average of the distances from the features of surrounding 
fixed anchor points.

In the existing threshold-based positive sample selection strategy 
in the Region Proposal Networks (RPN), each GT has at least one 
candidate box. However, the IoUs of some GTs and their best-matched 
candidate boxes are still lower even far lower than the matched thresh-
old, especially for those objects with a significant disparity in size from 
the candidate boxes or those in turning, thereby increasing the learning 
difficulty. Consequently, these positive samples that fail to influence 
the model during the first stage, leading to a smaller probability of 
being selected as positive samples to enter the subsequent second 
stage. Therefore, we propose a Super-dense Candidate Boxes (SDCB) 
strategy to enhance the initial IoU of GT boxes and the matched positive 
samples. The combining of GDCP and SDCB prevents the issue of 
insufficient candidate boxes within a small region, which is helpful for 
the detection of pedestrians walking side by side. Additionally, given 
the same number of candidate boxes for each category, the number of 
large objects selected as positive samples is much greater than that of 
small objects, which easily causes an imbalance in sample quantity and 
learning difficulty. Hence, we propose a Dynamic Number of Candidate 
Boxes (DNCB) strategy for different sizes of objects to achieve the 
learning balance across different categories for multi-class 3D object 
detection.

In addition to Gaussian distribution, we also propose a Dynamic 
Super-dense Candidate Boxes (DSCB inherently integrates two core 
components: the SDCB and DNCB) strategy based on discrete uni-
form distribution (DUCandiDet) and continuous uniform distribution 
(CUCandiDet), to reduce runtime and improve robustness.

We have applied diffusion models to 3D object detection and 
achieved competitive results as shown in Fig.  1, confirming the fea-
sibility and superiority of diffusion models for 3D object detection, and 
providing a novel paradigm for enhancing the effectiveness of diffusion 
models in 3D object detection tasks. Our contributions are as follows:

(1) We propose DiffCandiDet for dense candidate boxes with Gaus-
sian distributed center points (GDCP) in the RPN, which effectively 
integrates the anchor-based method and the Gaussian random noise-
based method.

(2) We propose a Super-dense Candidate Boxes (SDCB) strategy to 
enhance the initial IoU between GT boxes and candidate boxes for 
objects with significantly different sizes or those undergoing turns. We 
propose a Dynamic Number of Candidate Boxes (DNCB) strategy to 
achieve the learning balance across categories of varying sizes.
3 
(3) Dynamic Super-dense Candidate Boxes (DSCB) strategy with 
center points of discrete uniform distribution (DUCandiDet) and con-
tinuous uniform distribution (CUCandiDet) are proposed as an auxiliary 
rule to reduce the runtime consumption and enhance the robustness of 
the model.

(4) Our DiffCandiDet, DUCandiDet, and CUCandiDet can be applied 
to both LiDAR-only and multi-model anchor-based detection models, 
and we have achieved state-of-the-art results. DiffCandiDet ranks 
1st on the KITTI validation set in the Car and Pedestrian detection 
leaderboard.

2. Related work

2.1. Anchor-based 3D object detection

Anchor-based methods [34–37] typically predefine a set of equally 
spaced 3D rectangular boxes in the RPN, referred to as anchors. Due 
to the similarity in shape and size of the same category, identical 
shapes and sizes are assigned to anchors for each category, while varia-
tions exist across different categories. Voxel-RCNN [25] fully leverages 
coarse-grained voxel features to achieve detection accuracy compared 
to point-based models. PV-RCNN [12] leverages the strengths of point 
and voxel by Voxel Set Abstraction module to fuse keypoint, voxel, and 
BEV features. CT3D [38] leverages the high-quality region proposal net-
work and introduces a Channel-wise Transformer architecture. Graph 
R-CNN [20] utilizes Dynamic Point Aggregation to sample points and 
uses RoI-graph Pooling to iteratively aggregate and update the features 
of each node and its neighbors. CasA [21] introduces a cascade atten-
tion module that adds the attention mechanism to cascade networks. 
PDV [14] considers point density as a feature that uses kernel den-
sity estimation (KDE) and enhances self-attention with density-aware 
positional encoding. TED [24] introduces an efficient Transformation-
Equivariant 3D Detector, securing the top rank among all submissions 
on the KITTI 3D Car detection leaderboard while maintaining com-
petitive efficiency. VirConv [16] introduces StVD (Stochastic Voxel 
Discard) to mitigate computational issues by discarding a large number 
of nearby redundant voxels and NRConv (Noise-Resistant Submanifold 
Convolution) to address noise problems by encoding voxel features in 
2D images and 3D LiDAR space. However, the fixed anchors suffer 
from inherent limitations in adapting to structural incompatibilities 
with initial object morphologies, resulting in geometric discrepancies 
between candidate regions and target objects.

2.2. Multi-modal 3D object detection

Multi-modal methods alleviate geometric rigidity constraints by 
fusing LiDAR point clouds with image semantics, where high-resolution 
image features enhance the detection of distant targets represented 
by sparse point cloud data. Multi-modal 3D object detection [39–44] 
typically involves integrating knowledge from images into point clouds, 
generating pseudo point clouds through depth completion [45], and 
fusing image and LiDAR features during backbone network, proposal 
generation, or RoI refinement stages. PointPainting [46] projects LiDAR 
points into the output of a pure image semantic segmentation network 
and attaches class scores to each point. EPNet [47] enhances point 
features with semantic image features on a point-wise basis without 
any image annotations. SFD [48] utilizes depth completion to generate 
pseudo-point clouds and employs 3D Grid-wise Attentive Fusion to 
leverage information from different types of point clouds. Additionally, 
Color Point Convolution is used to simultaneously explore 2D image 
features and 3D geometric features of the pseudo-point clouds. Lo-
GoNet [23] projects the proposal grid centers onto images and samples 
the surrounding image pixels to achieve local fusion and utilizes point 
centroids for better cross-modal alignment to achieve global fusion.
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2.3. Diffusion model for 3D object detection

Compared to prior approaches, diffusion models address geomet-
ric rigidity constraints by implicitly learning proposal distributions 
through a noise-addition and noise-removal process, eliminating the 
need for predefined anchors. Furthermore, their Markov chain-based 
optimization enables step-by-step refinement of predictions, effectively 
mitigating error accumulation. More importantly, the iterative denois-
ing mechanism in diffusion probabilistic models inherently facilitates 
efficient cross-modal feature fusion through progressive uncertainty 
reduction. The diffusion model [49–51] has achieved tremendous suc-
cess in image generation. DDPM [52] pioneers applying the diffusion 
model to image generation, conceptualizing image generation as a 
Markov chain. This involves a forward process that introduces noise 
to GT images gradually and a reverse process that reconstructs clean 
images from pure Gaussian noise images. DDIM [53] removes the 
constraint of the inference process being a Markov chain, enabling 
step-skipping acceleration. DiffusionDet [31] pioneers the application 
of the diffusion model in 2D object detection tasks, which considers 
the bounding boxes in the RPN as Gaussian noise boxes. Diff3Det [54] 
extends DiffusionDet to 3D object detection by treating the candidate 
boxes as Gaussian noise boxes in the RPN. However, since BEV features 
inherently capture global spatial representations, naively treating all 
five degrees of freedom (DoFs) of projected detection boxes as Gaussian 
noise and aggregating BEV features via RoIAlign introduces significant 
computational overhead during feature extraction. DiffRef3D [55] con-
siders the residuals of GT and 3D proposal boxes as the noise and 
introduces conditional diffusion into 3D object detection. However, 
DiffRef3D learns a mapping from arbitrary boxes to GT boxes, which 
poses high optimization challenges and yields limited performance 
gains. DiffBEV [56] utilizes the denoising and recovery capabilities of 
conditional diffusion models to generate more comprehensive BEV fea-
ture representations, aiming to capture fine-grained object details such 
as precise boundaries for 3D object detection and highly detailed shapes 
for BEV semantic segmentation. However, its focus on feature-level 
denoising diverges from DiffCandiDet‘s hybrid detection paradigm.

3. Method

As shown in Fig.  4, we design DiffCandiDet using diffusion proba-
bilistic models based on Dynamic Super-dense Candidate Boxes (DSCB) 
strategy with Gaussian-distributed center points, which achieve
geometry-aware proposal generation and advanced results, confirm-
ing the feasibility and superiority of diffusion models in 3D object 
detection. Furthermore, we introduce DUCandiDet and CUCandiDet as 
ablation variants of DiffCandiDet, where the center points are sampled 
from discrete uniform distribution and continuous uniform distribution 
respectively.

3.1. Preliminaries

3.1.1. Denoising diffusion model
The DDIM [53] includes both forward process 𝑞 and reverse process 

𝑝 as shown in Fig.  2(a). Assuming the original data follows the distri-
bution 𝑞 = 𝑞(𝑧0). In the forward process, Gaussian noise is gradually 
added to the original data 𝑧0, transforming it into 𝑧1, 𝑧2, 𝑧3 until pure 
Gaussian noise 𝑧𝑡. The forward process is defined as follows: 
𝑞(𝒛𝑡 ∣ 𝒛𝑡−1) ∶=  (𝒛𝑡;

√

1 − 𝛽𝑡𝒛𝑡−1, 𝛽𝑡𝑰) (1)

where 𝒛𝑡 is noise sample at timestep 𝑡 ∈ {0, 1,… , 𝑇 }, 𝛽𝑡 ∈ (0, 1) is 
variance schedule of the added noise. Hence, we can directly sample 
data 𝑧𝑡 with noise at an arbitrary timestep 𝑡 as follows: 

𝑞
(

𝒛𝑡 ∣ 𝒛0
)

∶= 
(

𝒛𝑡;
√

𝛼̄𝑡𝒛0,
(

1 − 𝛼̄𝑡
)

𝑰
)

(2)

where 𝛼̄𝑡 ∶=
∏𝑡

𝑖=0 𝛼𝑖 =
∏𝑡

𝑖=0(1 − 𝛽𝑖), 𝒛0, 𝒛𝑡, and 𝛽𝑖 represent the sample, 
pure Gaussian noise sample, and noise variance schedule, respectively.
4 
During training, the progressively denoised pure Gaussian noise 
inversely reverses the forward process. Specifically, we train a neural 
network 𝑓𝜃(𝒛𝑡, 𝑡) to predict 𝑧0 from 𝑧𝑡 by minimizing the training 
objective with 𝓁2 loss as follows: 

𝑡𝑟𝑎𝑖𝑛 =
1
2
‖𝑓𝜃(𝒛𝑡, 𝑡) − 𝒛0‖2 (3)

During inference, we iteratively recover 𝒛0 from the arbitrary pure 
Gaussian noise 𝒛𝑡 using the trained model 𝑓𝜃 . The iterative inference 
process is as follows: 
𝒛𝑇 → 𝒛𝑇 -𝛥 → ... → 𝒛0 (4)

The step-skipping in DDIM enhances the inference speed compared 
with DDPM.

3.2. Diffusion model with Gaussian distributed center points

Applying the diffusion model to detection tasks essentially involves 
treating the detection boxes as Gaussian noise. For example, as shown 
in Fig.  2(b), DiffusionDet [31] considers the center point and size of 
a 2D anchor (𝑥𝑎, 𝑦𝑎, 𝑤𝑎, ℎ𝑎) as Gaussian noise, where 𝑥𝑎, 𝑤𝑎 ∈ (0, 𝑤𝐼 )
and 𝑦𝑎, ℎ𝑎 ∈ (0, ℎ𝐼 ). 𝑤𝐼  and ℎ𝐼  represent the weight and height of the 
image. As shown in Fig.  2(c), Diff3Det [54] treats the top view of a 
3D anchor (𝑥𝑎, 𝑦𝑎, 𝑤𝑎, 𝑙𝑎, 𝜃𝑎) as Gaussian noise, where 𝑖𝑎 ∈ (𝑙𝑖, 𝑢𝑖) and 
𝑖 ∈ {𝑥, 𝑦,𝑤, ℎ, 𝜃}. 𝑙𝑥, 𝑙𝑦, 𝑢𝑥 and 𝑢𝑦 represent the lower and upper bounds 
of the width and length of a BEV map. 𝑙𝑤, 𝑙ℎ, 𝑢𝑤 and 𝑢ℎ denote the 
lower and upper bounds of the manually set length and width of an 
anchor. 𝑙𝜃 and 𝑢𝜃 are the lower and upper bounds of the orientation 
angle of an anchor. Although treating multiple degrees of freedom of 
a bounding box as Gaussian noise in the RPN is feasible, introducing 
multiple degrees of freedom in candidate boxes significantly increases 
uncertainty. Empirically, simultaneous learning with more degrees of 
freedom tends to increase the complexity and learning difficulty. How 
to design a reasonable model that can not only utilize the powerful 
denoising and repair capabilities of the diffusion model but also make 
good use of the high performance of the existing anchor-based and 
multi-modal methods is a valuable question.

To solve the above challenges, we innovatively propose a dense can-
didate boxes strategy with Gaussian distributed center points (GDCP) 
in the RPN as shown in Fig.  2(c). Specifically, we consider the center 
points (All the center points in the following text refer to 𝑥 and 𝑦
coordinates of center points) of the candidate boxes as Gaussian noise 
within the boundary range of the BEV map and form dense candi-
date boxes on this basis. The diffusion model aims to learn complex 
mappings of center points from a Gaussian distribution to the target 
distribution. We assume that Gaussian distributions better reflect real-
world distributions than uniform distributions for autonomous driving 
scenarios, particularly considering two key factors:

(1) LiDAR Sensing Characteristics: The point cloud data exhibits 
a density-distance correlation, where distant objects with excessively 
sparse point clouds are typically unlabeled as GT and thus excluded 
from the learning, causing the detected objects to predominantly cluster 
near the ego vehicle.

(2) Spatial Distribution Patterns: Occlusions caused by static struc-
tures (e.g., buildings) and natural traffic patterns restrict LiDAR scan-
ning coverage. Consequently, detectable objects are spatially concen-
trated around the autonomous vehicle due to these visibility con-
straints.

The center points of these candidate boxes are not in the same 
positions while the previous candidate boxes are all located in the 
center of the grid cell of the BEV feature map as shown in Fig.  4(a) (c). 
Using nearest-neighbor interpolation [57] is a straightforward method, 
however, the candidate boxes strategy with GDCP requires one-to-one 
correspondence between center points and BEV features. Therefore, we 
apply the bilinear interpolation [12,58] where the features of Gaussian 
noise points are represented as a weighted average of the distances 
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Fig. 4. After voxelization of the input point clouds and subsequent processing through the 3D and 2D backbone, the dense candidate boxes are generated in the different Region 
Proposal Networks (a), (b), (c), and (d) respectively. (a) previous dense candidate boxes, (b) dynamic super-dense candidate boxes with discrete uniform center points, (c) dynamic 
super-dense candidate boxes with Gaussian-distributed center points, and (d) dynamic super-dense candidate boxes with continuous uniform center points. Following this, the fully 
connected (FC) layers are established for confidence and regression, which are separately designed for different categories. After that, the output is obtained from the RoI networks 
in the second stage. Finally, the denoising diffusion implicit model (DDIM) is utilized to evaluate the distribution of the center points in the next step of DiffCandiDet.
of the center points and its four adjacent fixed grid cell center points 
separately, as illustrated in Fig.  4(c). In this way, the original data 
𝑞 = 𝑞(𝑧0) represents 𝑥𝑎 and 𝑦𝑎 of candidate boxes. This allows the 
diffusion model to be applied to dense anchor-based models. Compared 
to conventional anchor-based methods, the iterative denoising mecha-
nism of diffusion models progressively rectifies detection errors through 
multi-step optimization shown in Fig.  3. Notably, the diffusion model 
with GDCP can effectively integrate the advantage of the anchor-based 
methods and the Gaussian random noise-based method to leverage 
the powerful denoising and reconstruction capabilities of the diffusion 
model. The training and inference process are as follows:

3.2.1. Training
As illustrated in Algorithm 1, we initially extract voxel features 

using the encoder. Then we incorporate additional center points by 
padding GT center points with Gaussian distributed center points to a 
fixed number 𝑁𝑡𝑟𝑎𝑖𝑛 since the number of GT boxes varies in each frame 
of point clouds. Subsequently, Gaussian noise is added to the padded 
GT center points, with the noise scale controlled by 𝛼̄𝑡 as follows: 
𝒛𝑡 =

√

𝛼̄𝑡𝒛0 +
√

1 − 𝛼̄𝑡𝜀, where 𝜀 ∼  (0, 𝐈) (5)

The value of 𝛼̄𝑡 at different time steps 𝑡 follows a monotonically de-
creasing cosine schedule, as proposed in [59]. Following this, dense 
candidate boxes are generated based on the perturbed center points. We 
obtain the corresponding features for the candidate boxes through bilin-
ear interpolation [12]. Afterward, RoIs are obtained from the predicted 
boxes in the RPN by selecting the high-scoring boxes and applying 
Non-Maximum Suppression (NMS). The refined network extracts RoI 
features to generate the center points of the final predicted boxes as 
follows: 
𝒛𝑟𝑜𝑖 = 𝑓𝜃(𝒛𝑡, 𝑡, 𝑓𝑏𝑒𝑣, 𝑓𝑟𝑜𝑖) (6)

where 𝑓𝜃 denotes the model of the baseline. 𝑓𝑏𝑒𝑣 and 𝑓𝑟𝑜𝑖 represent the 
future of BEV map and RoI. The detector is then trained by minimizing 
5 
Fig. 5. When two pedestrians are clustered in a small area, their GT boxes often share 
a single candidate box with the highest IoU.

the residual between the center points of GT boxes and dense candidate 
boxes in the RPN as follows: 
 = 𝑟𝑒𝑔(𝒛𝑟𝑝𝑛, 𝒛0) + 𝑟𝑒𝑓𝑖𝑛𝑒(𝒛𝑟𝑜𝑖, 𝒛0) (7)

where 𝑟𝑒𝑔 represents the regression loss in the RPN. 𝑟𝑒𝑓𝑖𝑛𝑒 denotes 
the loss of the refining stage. 𝒛𝑟𝑝𝑛 denotes the center points of the 
predicted boxes in the RPN. The refining stage of the detector follows 
the baselines.

3.2.2. Inference
As illustrated in Algorithm 2, we generate Gaussian random center 

points 𝒛𝑡 and produce dense candidate boxes based on them. In the 
iterative inference steps, predicted boxes are obtained, and then we 
utilize DDIM to evaluate the distribution of center points of predicted 
boxes in the next step as follows: 
𝒛 = 𝑑𝑑𝑖𝑚_𝑠𝑡𝑒𝑝(𝒛 , 𝒛 , 𝑡, 𝑡 ) (8)
𝑛𝑒𝑥𝑡 𝑡 𝑝𝑟𝑒𝑑 𝑛𝑒𝑥𝑡
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Algorithm 1  Training 

def train_loss(point_clouds, gt_box):
# Point_clouds: [B, N_point, 3]
# Centers of gt_boxes: [B, *, 2]
# N: number of boxes’ centers
# Encode BEV features
feats = point_clouds_encoder( point_clouds )
# Pad centers of gt_boxes to N
pc = pad_centers(centers of gt_boxes)
# Padded centers of boxes: [B, N, 2]
pc = (pc * 2 - 1) * scale                      # Signal scaling
# Corrupt centers of gt_boxes
t = randint(0, T)                                # time step
eps = normal(mean=0, std=1)               # noise: [B, N, 2]
pc_crpt = sqrt(     alpha_cumprod(t)) * pc +

 sqrt(1 - alpha_cumprod(t)) * eps
pb_crpt = generate_anchor(p_crpt)
# Predict
pb_pred = detection_decoder(pb_crpt, feats, t)
# Set prediction loss
loss = set_prediction_loss(pb_pred, gt_boxes)
return loss

Algorithm 2  Sampling 

def infer(point_clouds, steps, T):
# Point_clouds: [B, N_point, 3]
# Steps: number of sample steps
# T: number of time steps
# Encode BEV features
feats = point_cloud_encoder(point_clouds)
# Noisy centers of boxes: [B, N, 2]
pc_t = normal(mean=0, std=1)          #noisy centers
pb_t = generate_anchor(pc_t)          #noisy candidate boxes
# Uniform sample step size
times = reversed(linespace(-1, T, steps))
# [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
time_pairs = list(zip(times[:-1], times[1:])
for t_now, t_next in zip(time_pairs):
# Predict pb_0 from pb_t
pb_pred = detection_decoder(pb_t, feats, t_now)
# Estimate pb_t at t_next
pb_t = ddim_step(pb_t, pb_pred, t_now, t_next)
pc_t = center_renewal(pb_t)          # center renewal
pb_t = generate_anchor(pc_t)

return pb_pred

where 𝒛𝑝𝑟𝑒𝑑 denotes the center points of final predicted boxes. 𝒛𝑛𝑒𝑥𝑡
represents the center points of the next step 𝑡𝑛𝑒𝑥𝑡. The predicted boxes 
are divided into desired boxes near the bounding boxes of GT with 
higher scores and undesired boxes at arbitrary positions with relatively 
lower scores, respectively. Inputting undesired boxes into the next step 
can lead to performance degradation since their distribution is not 
constructed from perturbed boxes during training. Therefore, object 
boxes with scores exceeding a certain threshold 𝜇 are retained, while 
those below 𝜇 are discarded to align with training consistency better. 
The center points of retained object boxes are concatenated with the 
randomly regenerated center points for iterative inference.

3.3. Super-dense candidate boxes strategy

For most multi-class 3D object detection models, traditional anchor-
based methods are uniformly spaced on the BEV plane which struggles 
to detect pedestrians walking side by side. When multiple small ob-

jects cluster together within a confined area, they may share only 

6 
Fig. 6. The proposal quality in the refinement stage improves by a large margin when 
using DSCB on the KITTI training set. The orange parts represent the improvements by 
adding DSCB.

one candidate box with a high Intersection over Union (IoU) score, 
ultimately leading to missed detections. Specifically, when two pedes-
trians walking side by side share the same candidate box selected 
as a positive sample (above the matched threshold 𝜃𝑚𝑎𝑡𝑐ℎ) or ignored 
sample (between the unmatched threshold 𝜃𝑢𝑛𝑚𝑎𝑡𝑐ℎ and 𝜃𝑚𝑎𝑡𝑐ℎ), while 
the other candidate boxes are negative samples (below 𝜃𝑢𝑛𝑚𝑎𝑡𝑐ℎ), only 
one pedestrian can be predicted and another one is missed predicted, as 
shown in Fig.  5. Therefore, we propose a Super-dense Candidate Boxes 
(SDCB) strategy. Notably, combining the SDCB strategy and candidate 
boxes with GDCP can avoid missed detection for pedestrians walking 
side by side by ensuring multiple candidate boxes within a densely 
packed region of interest, which reduces the probability of multiple 
objects sharing a candidate box.

Furthermore, the conventional dense candidate box strategy tends 
to face greater difficulty in learning the residual between candidate 
boxes and GT boxes since the lower initial IoU between them especially 
for small objects on average as illustrated in Fig.  7. When the density of 
candidate boxes is increased to four times that of the previous candidate 
boxes, the average IoU between GT and the four adjacent candidate 
boxes rises by a large margin for the Car, Pedestrian, and Cyclist, 
respectively. Therefore, as the number of candidate boxes becomes 
denser, the number of candidate boxes selected as positive samples 
increases. The detailed configuration of SDCB is reflected in the next 
paragraph.

3.4. Dynamic number of candidate boxes strategy

To balance the proportion of different categories selected as positive 
samples and reduce the residual between the candidate boxes and the 
GT at the beginning, we propose a Dynamic Number of Candidate Boxes 
(DNCB) strategy for multi-class 3D object detection. Specifically, we set 
the number of candidate boxes positively correlated with the diagonal 
of the candidate boxes. Since we prefer small objects to have a greater 
number of candidate boxes empirically. The formula is as follows: 

𝑁𝑢𝑚{𝑐𝑎𝑟,𝑝𝑒𝑑.,𝑐𝑦𝑐.} = {𝑁,𝑁 + 𝑘,𝑁 + ⌊(𝑘 ∗
𝐿𝑐𝑦𝑐.

𝑟𝑜𝑢𝑛𝑑(𝐿𝑝𝑒𝑑.)
)⌋} (9)

𝐿𝑐∈{𝑐𝑎𝑟,𝑝𝑒𝑑.,𝑐𝑦𝑐.} =
√

𝑊 2
𝑐∈{𝑐𝑎𝑟,𝑝𝑒𝑑.,𝑐𝑦𝑐.} +𝐷2

𝑐∈{𝑐𝑎𝑟,𝑝𝑒𝑑.,𝑐𝑦𝑐.} (10)

where 𝑁 denotes the number of candidate boxes for the Car, which 
is the basis of other categories. 𝑘 serves as a scale for quantifying the 
disparity in the number of candidate boxes between the Car and other 
categories. 𝑁 and 𝑘 joint control the DSCB strategy. 𝑟𝑜𝑢𝑛𝑑(𝑥) represents 
rounding to the nearest integer. 𝑊𝑐 , 𝐷𝑐 , and 𝐿𝑐 represent the width, 
depth, and diagonal length of the 𝑐 category anchor in the BEV map, 
respectively. The ratio between 𝐿𝑐𝑦𝑐 and 𝐿𝑝𝑒𝑑 also serves to balance the 

number of candidate boxes between the Pedestrian and Cyclist.
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Fig. 7. The IoU between candidate boxes with different center points and orientations and their adjacent four candidate boxes is computed. The average IoU increased from 0.610, 
0.545, and 0.405 to 0.640, 0.560, and 0.410 for the Car category. The average IoU increased from 0.348, 0.355, and 0.370 to 0.565, 0.503, and 0.620 for the Pedestrian category. 
The average IoU increased from 0.410, 0.355, and 0.300 to 0.540, 0.458, and 0.320 for the Cyclist category.
3.5. Distribution of center points

To reduce the runtime consumption, we also propose DUCandiDet 
using DSCB with discrete uniformly distributed center points strategy as 
shown in Fig.  4(b). DiffCandiDet’s candidate boxes need to be updated 
with changes in the center points each time. However, DUCandiDet 
allows for the pre-definition of candidate boxes and their center points, 
thus saving inference time. In addition to Gaussian distribution, a 
natural progression leads to CUCandiDet using DSCB with continuous 
uniformly distributed center points strategy which introduces random-
ness and improves robustness compared to DUCandiDet as shown in 
Fig.  4(d). Note that DUCandiDet and CUCandiDet are introduced solely 
as ablation studies to validate the distinct distribution characteristics 
under different noise assumptions.

3.6. Diffusion-based 3D object detection

For DiffRefDet, the forward process involves adding noise to the 
residuals of GT and 3D proposal boxes (𝑥𝑟, 𝑦𝑟, 𝑧𝑟, 𝑙𝑟, 𝑤𝑟, ℎ𝑟, 𝜃𝑟) as 𝑧0
until Gaussian noise samples 𝑧𝑡. The reverse process entails training a 
model to recover the residuals from Gaussian noise samples 𝑧𝑡. There-
fore, the iterative inference of DiffRefDet includes seven dimensions (𝑥, 
𝑦, 𝑧, 𝑙, 𝑤, ℎ, 𝜃), resembling DiffusionDet’s four dimensions (𝑥, 𝑦, 𝑤, ℎ) 
in image and Diff3Det’s five dimensions (𝑥, 𝑦, 𝑙, 𝑤, 𝜃) on BEV map. In 
contrast, the iterations in DiffCandiDet have two degrees of freedom 
(𝑥 and 𝑦) which could integrate the 2D BEV features by bilinear 
interpolation. Note that DiffCandiDet can employ diffusion models in 
one-stage (SECOND), two-stage (Voxel-RCNN, PV-RCNN, CasA+V), and 
multi-modal (TED-M and LoGoNet) models, shown its university. In 
contrast, DiffRefDet requires refinement stages in two-stage models and 
Diff3Det can be only employed in one-stage models.

3.7. Loss function

The losses in the RPN comprise the classification loss and the box 
regression loss, represented as 

 = 𝛽 ⋅  + 𝛽 ⋅  (11)
𝑟𝑝𝑛 1 𝑐𝑙𝑠 2 𝑟𝑒𝑔

7 
where 𝛽1 and 𝛽2 are the constant factors for the loss terms, respectively. 
The all loss for two-stage models is represented as 
 = 𝑟𝑝𝑛 + 𝑟𝑜𝑖 (12)

where 𝑟𝑜𝑖 represents the loss of RoI head in the refining stage. Fur-
thermore, the loss of diffusion model with GDCP is included in 𝑟𝑒𝑔
and 𝑟𝑜𝑖, which are the regression of center points 𝑥 and 𝑦.

4. Experimental results

4.1. KITTI dataset

The KITTI dataset contains 7481 LiDAR frame samples and 7518 
samples for training and testing respectively. Following [12,25], we 
split the training samples into 3712 frames and 3769 frames as training 
set and validation set respectively. The primary evaluation metric is 
the 3D Average Precision (AP) computed at 40 recall thresholds (R40). 
Each class is categorized into three levels: easy, moderate, and hard. 
The IoU thresholds in this metric are 0.7, 0.5, and 0.5 for the Car, 
Pedestrian, and Cyclist, respectively. When submitting test results to 
the official website, we train the models using 80% of the training 
data without any Test-Time Augmentation (TTA) and the prediction 
ensemble from multiple models.

4.2. Waymo open dataset

The Waymo open dataset consists of 798 and 202 sequences with 
158361 and 40077 LiDAR frames for training and validation, respec-
tively. The evaluation metrics are mean AP (mAP) (L1 and L2), mAPH 
(L1 and L2), where L1 and L2 denote the detection difficulty level. 
The mAPH metric takes into account object heading accuracy. The 
IoU thresholds in this metric are 0.7, 0.5, and 0.5 for the Vehicle, 
Pedestrian, and Cyclist, respectively.

4.3. Implementation settings

4.3.1. Pre-processing
For KITTI, the input point cloud range is limited to [0, 70.4] meters 

on the X axis, [−40, 40] meters on the Y axis, and [−3, 1] meters on 
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Table 1
The 3D detection results of DiffCandiDet, DUCandiDet, and CUCandiDet on the KITTI val set using SECOND, PV-RCNN, Voxel-RCNN, CasA, and TED as the baseline with AP 
calculated by 40 recall positions. DiffCandiDet, DUCandiDet, and CUCandiDet achieve the most substantial performance gains in pedestrian detection, with cyclists also showing 
notable improvements, albeit slightly less pronounced. While car detection exhibits more modest gains, all three methods consistently enhance robustness in hard scenarios, 
demonstrating their universal effectiveness across object categories. † indicates our reproduced results. ‡ represents the results obtained by running the author’s source code. ⋆
denotes that the reported runtime is obtained by testing with the original paper’s provided weight files on the same GPU configuration used for running DiffCandiDet. The best 
results are in bold.
 Method Stage Modality Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Runtime 
 Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard (ms)  
 SECOND† [10] one LiDAR 90.21 81.66 78.72 – – – – – – 60.8  
 DiffCandiDet-SE (ours) one LiDAR 90.98 82.57 79.80 – – – – – – 94.0  
 CUCandiDet-SE (ours) one LiDAR 90.77 81.78 79.14 – – – – – – 74.8  
 Improvement – – +0.77 +0.91 +0.42 – – – – – – -  
 PV-RCNN† ⋆ [12] two LiDAR 92.10 84.36 82.48 62.71 54.49 49.88 89.10 70.38 66.02 82.3  
 DiffCandiDet-PV (ours) two LiDAR 92.53 85.31 83.06 68.72 61.79 57.23 91.22 72.04 68.87 193.0  
 DUCandiDet-PV (ours) two LiDAR 92.15 84.75 82.55 68.60 62.62 58.32 91.92 72.39 68.54 52.8  
 CUCandiDet-PV (ours) two LiDAR 92.66 85.44 83.23 68.06 60.54 54.29 92.38 72.47 69.29 93.6  
 Improvement – – +0.65 +1.08 +0.75 +6.01 +8.13 +8.44 +3.28 +2.02 +3.27 -  
 Voxel-RCNN† [25] two LiDAR 92.53 85.03 82.56 66.35 59.06 54.02 89.52 72.62 68.32 40.0  
 DiffCandiDet-Vo (ours) two LiDAR 92.49 85.13 82.94 72.35 65.73 59.27 92.87 75.98 71.41 134.2  
 DUCandiDet-Vo (ours) two LiDAR 92.13 84.79 82.48 71.23 65.64 61.00 90.95 72.43 68.03 98.2  
 CUCandiDet-Vo (ours) two LiDAR 92.65 85.46 82.14 68.51 63.27 56.81 93.60 74.11 69.49 60.0  
 Improvement – – +0.12 +0.43 +0.38 +6.00 +6.66 +6.98 +4.08 +3.36 +3.09 –  
 CasA+V† ⋆ [21] two LiDAR 93.21 86.37 83.93 73.95 66.62 59.97 92.78 73.94 69.37 32.6  
 DiffCandiDet-Ca (ours) two LiDAR 92.43 85.54 83.22 81.07 73.70 68.34 94.51 75.03 70.62 195.8  
 DUCandiDet-Ca (ours) two LiDAR 93.17 86.50 83.98 77.59 68.78 61.58 94.19 73.47 69.00 30.8  
 CUCandiDet-Ca (ours) two LiDAR 92.98 86.07 83.70 78.27 67.67 60.69 94.56 74.36 71.65 61.3  
 Improvement – – −0.04 +0.13 +0.05 +7.12 +7.08 +8.37 +1.78 +1.09 +2.28 –  
 TED-M† [24] two LiDAR+RGB 95.25 88.94 86.73 – – – – – – 166.2  
 DiffCandiDet-TEDM (ours) two LiDAR+RGB 95.74 89.21 86.61 – – – – – – 583.5  
 DUCandiDet-TEDM (ours) two LiDAR+RGB 95.61 89.05 86.57 – – – – – – 199.1  
 CUCandiDet-TEDM (ours) two LiDAR+RGB 95.84 89.03 86.58 – – – – – – 279.2  
 Improvement – – +0.59 +0.27 −0.12 – – – – – – –  
 LoGoNet‡ [23] two LiDAR+RGB 91.41 84.80 84.48 70.03 63.31 59.04 90.64 72.78 68.79 68.4  
 DiffCandiDet-Lo (ours) two LiDAR+RGB 92.03 85.46 85.07 75.44 69.14 63.83 90.96 74.14 71.03 58.8  
 DUCandiDet-Lo (ours) two LiDAR+RGB 92.12 85.34 84.94 73.26 67.83 63.56 91.01 73.37 69.67 54.7  
 CUCandiDet-Lo (ours) two LiDAR+RGB 92.16 85.35 84.96 69.79 65.01 60.31 90.29 72.62 70.24 72.8  
 Improvement – – +0.75 +0.66 +0.59 +5.41 +5.83 +4.79 +0.37 +1.36 +2.24 –  
the Z axis. The voxel size is set to [0.05, 0.05, 0.1] meters. For Waymo 
Open Datasets, the input point cloud range is limited to [−75.2, 75.2] 
meters on the X axis, [−75.2, 75.2] meters on the Y axis, and [−2, 4] 
meters on the Z axis. The voxel size is set to [0.1, 0.1, 0.15] meters. We 
follow all the baselines to perform data augmentation. We have also 
removed GT Sampling augmentation for the Pedestrian in multi-class 
3D object detection only on the KITTI dataset.

4.3.2. Training details
To demonstrate the universality and superiority of DiffCandiDet, 

UFCandiDet, and UDCandiDet, we conducted experiments on six pop-
ular baseline detectors: SECOND, PV-RCNN, Voxel-RCNN, CasA, TED 
and LoGoNet. For each detector on each dataset, we train a single 
model for three classes (one class in SECOND and TED-M). We train 
all the detectors on a single 4090 GPU card (a single 3060 GPU card 
for TED-M) with a batch size of four except for two in PV-RCNN and 
one in TED-M. The loss functions of DiffCandiDet, DUCandiDet, and 
CUCandiDet are all consistent to the loss functions in their baseline. 
DiffCandiDet, DUCandiDet, and CUCandiDet are optimized using the 
Adam optimizer [60], a division factor of 10, a momentum range of 
[0.95, 0.85], and a weight decay of 0.01. The maximum learning rate 
is set to 0.01 for both the KITTI and Waymo datasets. We trained 
all the models on KITTI and Waymo datasets for 80 and 30 epochs, 
respectively.

4.4. Comparison with state-of-the-art methods

4.4.1. KITTI validation set
We compare DiffCandiDet, DUCandiDet, and CUCandiDet with the 

baselines in Table  1. DiffCandiDet, DUCandiDet, and CUCandiDet all 
improve PV-RCNN, Voxel-RCNN, CasA, TED, and LoGoNet by a large 
8 
margin, demonstrating the efficacy of these methods. Specifically, 
for baseline PV-RCNN, DiffCandiDet-PV improves 3D AP (R40) per-
formance by +6.01%, +7.30%, and +7.35% for the Pedestrian, and 
+2.12%, +1.66%, and +2.85% for the Cyclist, respectively. For baseline 
Voxel-RCNN, DiffCandiDet-Vo improves 3D AP (R40) performance 
by +6.00%, +6.67%, and +5.25% for the Pedestrian, and +3.35%, 
+3.36%, and +3.09% for the Cyclist, respectively. DiffCandiDet-Ca 
improves 3D AP(R40) performance by +7.12%, +7.08%, and +8.37% 
for the Pedestrian and +1.73%, +1.09%, and +1.25% for the Cyclist, 
respectively, which achieves unprecedented results for the Pedestrian 
on KITTI val set. The more pronounced performance gains observed in 
smaller object categories (e.g., Pedestrian and Cyclist) can be primarily 
attributed to the diffusion framework’s iterative refinement mechanism. 
During the later stages of the multi-step optimization process, candidate 
proposals initialized closer to GT boxes achieve enhanced BEV fea-
ture alignment and spatial consistency, thereby reducing the learning 
complexity for precise localization compared to static anchor-based ini-
tialization strategies. For multi-modal paradigms, DiffCandiDet-TEDM 
achieves state-of-the-art results for the Car on the KITTI val set based 
on TED-M. DiffCandiDet-Lo improves 3D AP(R40) performance by 
+5.41%, +5.83%, and +4.79% for the Pedestrian based on LoGoNet. 
These performance improvements are fundamentally attributed to the 
diffusion model’s iterative denoising process, which progressively rec-
tifies detection inaccuracies through multi-step optimization, while sig-
nificantly enhancing robustness to initialization variances compared to 
conventional anchor-based paradigms. We compare DiffCandiDet with 
previous methods in Table  2. DiffCandiDet outperforms all the LiDAR-
based and multi-modal models. And our DUCandiDet and CUCandiDet 
also outperform all the baseline on the KITTI val set. Additionally, 
DUCandiDet achieves both good performance and reduced inference 
time, making it suitable for real-time 3D object detection. Notably, 
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Table 2
3D detection results on the KITTI validation set for the car, pedestrian, and cyclist categories with AP calculated by 40 recall positions. DiffCandiDet outperforms all of the previous 
LiDAR-only, multi-modal and diffusion-based methods. The best results are in bold.
 Method Modality Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40)
 Easy Mod. Hard mAP Easy Mod. Hard mAP Easy Mod. Hard mAP  
 PV-RCNN [12] LiDAR 92.10 84.36 82.48 86.31 62.71 54.49 49.88 55.69 89.10 70.38 66.02 75.17 
 Voxel-RCNN [25] LiDAR 92.53 85.03 82.56 86.71 66.35 59.06 54.02 59.81 89.52 72.62 68.32 76.82 
 PG-RCNN [61] LiDAR 92.73 85.26 82.83 86.94 68.44 60.63 55.36 61.48 93.84 74.85 70.15 79.61 
 PDV [14] LiDAR 92.56 85.29 83.05 86.97 66.90 60.80 55.85 61.18 92.72 74.23 69.60 78.85 
 CT3D [38] LiDAR 92.85 85.82 83.46 87.38 65.73 58.56 53.04 59.11 91.99 71.60 67.34 76.98 
 Graph-Vo [20] LiDAR 93.27 86.07 83.12 87.49 – – – – – – – –  
 SE-SSD [19] LiDAR 93.19 86.12 83.31 87.54 – – – – – – – –  
 BtcDet [62] LiDAR 93.15 86.28 83.86 87.76 69.39 61.19 55.86 62.15 91.45 74.70 70.08 78.74 
 CasA+V [21] LiDAR 93.21 86.37 83.93 87.84 73.95 66.62 59.97 66.85 92.78 73.94 69.37 78.70 
 Aug-VirConv [63] LiDAR 92.62 87.76 85.34 88.57 – – – – – – – –  
 DiffCandiDet-Vo (ours) LiDAR 92.49 85.13 82.94 86.86 72.35 65.73 59.27 65.78 92.87 75.98 71.41 80.07 
 DiffCandiDet-Ca (ours) LiDAR 92.43 85.54 83.22 87.06 81.07 73.70 68.34 74.37 94.51 75.03 70.62 80.05 
 F-PointNet [64] LiDAR+RGB 83.76 70.92 63.65 72.78 70.00 61.32 53.59 61.64 77.15 56.49 53.37 62.34 
 EPNet++ [65] LiDAR+RGB 92.51 83.17 82.27 85.98 73.77 65.42 59.13 66.11 86.23 63.82 60.02 70.02 
 CLOCs [66] LiDAR+RGB 92.78 85.94 83.25 87.32 – – – – – – – –  
 Graph-VoI [20] LiDAR+RGB 95.67 86.87 84.09 88.88 – – – – – – – –  
 SFD [48] LiDAR+RGB 95.52 88.27 85.57 89.79 72.94 66.69 61.59 67.07 93.39 72.95 67.26 77.87 
 ACF-Net [67] LiDAR+RGB 93.17 88.80 86.53 89.5 – – – – – – – –  
 DiffCandiDet-TEDM (Ours) LiDAR+RGB 95.74 89.21 86.61 90.52 – – – – – – – –  
Table 3
3D detection results on the KITTI test set for the car and cyclist categories using Voxel-RCNN as the baseline with AP calculated by 40 recall 
positions. DiffCandiDet-Vo achieves competitive results. The best results are in bold.
 Method Modality Car 3D (R40) Cyclist 3D (R40)
 Easy Mod. Hard mAP Easy Mod. Hard mAP  
 PV-RCNN [12] LiDAR 90.25 81.43 76.82 82.83 78.60 63.71 57.65 66.65 
 PV-RCNN++ [68] LiDAR 90.14 81.88 77.15 83.06 82.22 67.33 60.04 69.86 
 SE-SSD [19] LiDAR 91.49 82.54 77.15 83.73 – – – –  
 STD [69] LiDAR 87.95 79.71 75.09 80.92 78.69 61.59 55.30 65.19 
 SVGA-Net [70] LiDAR 87.33 80.47 75.91 81.24 78.58 62.28 54.88 65.25 
 PointPainting [71] LiDAR+RGB 82.11 71.70 67.08 73.63 77.63 63.78 55.89 65.77 
 F-ConvNet [72] LiDAR+RGB 87.36 76.39 66.69 76.81 81.98 65.07 56.54 67.86 
 CLOCs [66] LiDAR+RGB 88.94 80.67 77.15 82.25 – – – –  
 EPNet++ [65] LiDAR+RGB 91.37 81.96 76.71 83.35 76.15 59.71 53.67 63.18 
 PDV [14] LiDAR 90.43 81.86 77.36 83.22 83.04 67.81 60.64 70.50 
 PointRCNN [73] LiDAR 86.96 75.64 70.70 77.77 74.96 58.82 52.53 62.10 
 Diff3Det [54] LiDAR 89.45 80.86 77.41 82.57 – – – –  
 Voxel-RCNN [25] LiDAR 90.90 81.62 77.06 83.19 76.42 62.01 55.94 64.79 
 DiffRef3D [55] LiDAR 90.45 81.29 76.66 82.80 80.16 66.61 59.98 68.92 
 DiffCandiDet-Vo (Ours) LiDAR 91.18 82.59 77.64 83.80 83.87 67.84 60.56 70.74 
Table 4
3D detection results on the Waymo validation set by training on 20% of the training samples (approximately 32K frames) 
and validating on the entire validation set. DiffCandiDet-PV outperforms the baseline using the anchor head. The best results 
are in bold..
 Methods Car(L1) Car(L2) Cyclist(L1) Cyclist(L2)

 mAP mAPH mAP mAPH mAP mAPH mAP mAPH 
 PV-RCNN [12] 75.17 74.53 66.55 65.97 67.02 64.67 64.56 62.31  
 DUCandiDet-PV 75.91 75.28 67.34 66.76 68.80 67.29 66.23 64.78  
DUCandiDet demonstrates faster inference speeds than several baseline 
models.

4.4.2. KITTI test set
To further demonstrate the advancement of our DiffCandiDet, we 

trained DiffCandiDet-Vo using 80% of the training data of the KITTI 
training and validation set. The results on the KITTI test set are sum-
marized in Table  3. DiffCandiDet achieves competitive results.

4.4.3. Waymo open dataset
The results on the Waymo validation set are shown in Tables  4 and

5. DUCandiDet outperforms the baseline PV-RCNN. Compared to the 
baseline Voxel-RCNN, DiffCandiDet significantly improves the Cyclist 
detection mAP by +1.92% and +1.90%, and mAPH by +1.61% and 
9 
+1.56%, respectively. The results further demonstrate the effectiveness 
of our method.

4.5. Ablation study and runtime analysis

4.5.1. Effectiveness of SDCB and DNCB
The ratio of different models selected as positive samples changes 

when utilizing the Dynamic Super-dense Candidate Boxes (DSCB) as 
shown in Fig.  8. The DSCB balances the proposal proportion of different 
categories in the RPN to prevent the proportion of the Car categories 
selected as positive samples from becoming too high. When we add the 
SDCB, as shown in the second and third rows in Table  6, the result 
is improved by +0.47%, and +0.54% for the Pedestrian and Cyclist on 
average, respectively. This improvement stems from the SDCB module’s 
ability to increase candidate box density, which substantially raises the 
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Fig. 8. The positive samples for each GT in the RPN when setting different 𝑁 and 𝑘 in DSCB and different times in SDCB on the KITTI training set.
Table 5
3D detection results on the Waymo validation set. All results are obtained by training 
on 20% of the training samples (approximately 32K frames) and validating on the 
entire validation set. DiffCandiDet achieves competitive results for Cyclist detection. 
The best results are in bold.
 Methods Cyclist(L1) Cyclist(L2)

 mAP mAPH mAP mAPH 
  Part-A2-Net [74] 68.60 67.36 66.13 64.93  
 LIDAR-RCNN [75] 68.60 66.90 66.10 64.40  
 Voxel-RCNN [25] 68.74 67.56 66.46 65.35  
 CT3D [38] 69.28 67.88 66.84 65.48  
 PV-RCNN++ [68] 68.98 67.63 66.48 65.17  
 CasA+PV [21] 68.19 66.76 65.73 64.33  
 CasA+V [21] 69.69 68.38 67.07 66.83  
 DiffCandiDet-Vo (ours) 70.66 69.46 68.07 66.91  

probability of high-quality candidates (IoU >0.5 for the Car and IoU 
>0.7 for the Ped. and Cyc.) being selected as positive samples during 
training and consequently reduces the false negative rate for small 
objects, especially in highly clustered and dense scenarios for small 
objects such as pedestrians and cyclists. When we add DNCB, as shown 
in the fourth and last rows in Table  6, the result is improved by +2.18% 
and +1.31% for the Pedestrian and Cyclist on average, respectively. 
And the proposal quality improves in the refinement stage when using 
DSCB as shown in Fig.  6. The IoU of total positive samples and the GT 
boxes improves by a large margin. This improvement can be attributed 
to the balance of DNCB module, which elevates the density capacity for 
small targets (e.g., Pedestrian and Cyclist), thereby pushing the overall 
performance limits across all object categories.

4.5.2. Effectiveness of diffusion model with GDCP
When we add the diffusion model with GDCP, as shown in the 

third and fourth rows in Table  6, the result is improved by +0.70% 
and +1.64% for the Car and Cyclist on average, respectively. The per-
formance enhancements primarily stem from the iterative refinement 
mechanism inherent to diffusion models, whereby successive denois-
ing stages correct localization errors through multi-stage optimization. 
This paradigm achieves a reduction in initial proposal variance while 
demonstrating superior robustness compared to static anchor-based 
frameworks constrained by rigid geometric priors.

4.5.3. Inference step
As shown in Table  7, for DiffCandiDet-Vo and DiffCandiDet-Ca, the 

optimal inference step is 3 and 4. For most baselines, the performance 
will increase with the increase of inference steps in the first three steps, 
which validates the effectiveness of diffusion inference. A more suitable 
distribution of center points can be explored during iterative inference. 
It is essential to search for a more appropriate initial distribution of 
center points in cases where the original fixed candidate boxes have a 
lower IoU with GT, which is disadvantageous for feature capturing and 
learning.
10 
4.5.4. Inference speed
As shown in Table  7 The consumed time increases with the in-

creasing inference steps, which directly leads to future work. Even 
so, the increased time can be compensated by the satisfying detection 
performance. The fastest inference speed occurs when the inference 
step is 1. It is worth noting that the inference step of 1 takes slightly 
more time than the baseline but results in a significant performance 
improvement compared to the baseline. For time-sensitive 3D object 
detection tasks, a step of 1 is a good choice.

4.5.5. Effectiveness of removing GT sampling
When we remove GT Sampling for the Pedestrian category, as 

shown in the first and second rows in Table  6, the result is improved 
by +5.04%, +5.74%, and +6.24%, respectively. As shown in Table  8, 
when removing GT Sampling only for the Pedestrian category for other 
baselines, Graph-RCNN and CasA both gain amazing enhancement for 
the Pedestrian without any hyperparameter tuning and contain nearly 
consistent for the Car and Cyclist. As shown in Table  9, the performance 
has decreased significantly when we remove GT Sampling only for the 
Car and Cyclist respectively. This justifies our hypothesis that objects 
with a tall and sparse point cloud shape, and a relatively low number 
of points, are often unsuitable for GT sampling data augmentation. As 
shown in Table  8, GT sampling only for the Pedestrian can improve 
the Pedestrian detection performance without impacting the detection 
performance of other categories, and it may even lead to a slight 
improvement in the Cyclist detection performance. However, removing 
GT Sampling only for the Car or Cyclist will simultaneously lower the 
detection performance of other categories. Besides, as the number of 
GT sampling augmentation decreases, the detection performance of the 
Pedestrian increases as shown in Table  10. Therefore, GT sampling for 
the Pedestrian is unnecessary. This finding contradicts the common 
sense that a certain degree of GT Sampling would benefit Pedestrian 
detection. Furthermore, removing GT Sampling can easily be applied 
to other models to enhance detection performance without runtime 
increasing. Furthermore, as shown in Table  8, 9, and 10, removing GT 
Sampling across different categories and varying sampling counts in GT 
Sampling only affect performance without increasing inference time.

4.5.6. Dynamic 𝑁 and 𝑘 for training
The initial number of candidate boxes is empirically determined 

to exceed a predefined threshold of 35,200 (calculated as 200 × 172 
BEV grids), scaled proportionally across three object categories (Car, 
Pedestrian, and Cyclist) to maintain consistency with baseline imple-
mentations. To ensure robustness against initialization variance, we 
intentionally set parameter 𝑁 slightly above this theoretical mini-
mum and systematically evaluated performance through incremental 
increases. The hyperparameter 𝑘 governs the adaptive allocation ratio 
of additional candidate boxes to underrepresented object categories 
(Pedestrian and Cyclist) relative to the dominant Car category, address-
ing class imbalance through geometric prioritization. To find the most 
suitable number of candidate boxes of DiffCandiDet in training, we set 
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Table 6
3D detection results on the KITTI validation set for the car, pedestrian, and cyclist categories with AP calculated by 40 recall positions by applying different designed components 
based on Voxel-RCNN. The best results are in bold.
 Baseline Remove GT Sampling SDCB Diffusion Model DNCB Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40)
 Easy. Mod. Hard. Easy. Mod. Hard. Easy. Mod. Hard.  
 4 92.53 85.03 82.56 66.35 59.06 54.02 89.52 72.62 68.32 
 4 4 92.17 84.93 82.63 71.39 64.80 60.26 89.32 72.42 68.06 
 4 4 4 92.13 84.79 82.48 71.23 65.64 61.00 90.95 72.43 68.03 
 4 4 4 4 92.82 85.55 83.12 70.70 63.27 56.84 92.00 74.51 69.82 
 4 4 4 4 4 92.49 85.13 82.94 72.35 65.73 59.27 92.87 75.98 71.41 
Table 7
3D detection results and inference speed of DiffCandiDet with different inference steps on the KITTI validation set for car, pedestrian, and cyclist categories with AP calculated by 
40 recall positions using SECOND, PV-RCNN, Voxel-RCNN, CasA, and TED as the baseline. † indicates our reproduced results. The best results are in bold. 
 DiffCandiDet Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Runtime Params 
 step Easy Mod. Hard mAP Easy Mod. Hard mAP Easy Mod. Hard mAP (ms) (M)  
 SECOND† [10] 90.21 81.66 78.72 83.86 – – – – – – – – 60.8 5.3  
 inference step=1 (ours) 90.81 82.39 79.40 84.20 – – – – – – – – 78.2 5.3  
 inference step=2 (ours) 90.98 82.57 79.80 84.45 – – – – – – – – 94.0 5.3  
 PV-RCNN† [12] 92.10 84.36 82.48 86.31 62.71 54.49 49.88 55.69 89.10 70.38 66.02 75.17 82.3 13.1  
 inference step=1 (ours) 92.56 85.39 83.13 87.03 67.80 59.11 54.86 60.59 90.59 71.58 67.09 76.42 92.8 13.1  
 inference step=2 (ours) 92.47 85.23 83.01 86.90 69.21 61.79 55.76 62.25 90.60 71.62 67.23 76.48 145.6 13.1  
 inference step=3 (ours) 92.53 85.31 83.06 86.97 68.72 61.79 57.23 62.58 91.22 72.04 68.87 77.38 193.0 13.1  
 Voxel-RCNN† [25] 92.53 85.03 82.56 86.71 66.35 59.06 54.02 59.81 89.52 72.62 68.32 76.82 40.0 7.6  
 inference step=1 (ours) 92.19 83.34 82.80 86.11 72.56 64.26 57.63 64.82 92.21 74.09 69.39 78.56 68.8 7.6  
 inference step=2 (ours) 92.30 85.03 82.89 86.74 72.72 66.08 59.44 66.08 92.50 74.34 71.03 79.29 103.2 7.6  
 inference step=3 (ours) 92.49 85.13 82.94 86.85 72.35 65.73 59.27 65.78 92.87 75.98 71.41 80.09 134.2 7.6  
 CasA+V† [21] 93.21 86.37 83.93 87.84 73.95 66.62 59.97 66.85 92.78 73.94 69.37 78.70 32.6 11.3  
 inference step=1 (ours) 92.66 85.75 83.42 87.28 79.92 69.14 63.87 70.98 95.03 72.72 69.75 79.17 64.1 11.3  
 inference step=2 (ours) 92.51 83.91 83.39 86.60 79.79 70.79 63.74 71.44 95.31 73.35 70.29 79.65 112.3 11.3  
 inference step=3 (ours) 92.71 85.78 83.46 87.32 80.00 71.05 63.93 71.66 95.23 74.58 70.12 79.98 161.1 11.3  
 inference step=4 (ours) 92.43 85.54 83.22 87.06 81.07 73.70 68.34 74.37 94.51 75.03 70.62 80.05 195.8 11.3  
 TED-M† [24] 95.25 88.94 86.73 90.31 – – – – – – – – 166.2 18.9  
 inference step=1 (ours) 95.74 89.09 86.49 90.44 – – – – – – – – 254.4 18.9  
 inference step=2 (ours) 95.89 89.13 86.53 90.52 – – – – – – – – 416.3 18.9  
 inference step=3 (ours) 95.74 89.21 86.61 90.52 – – – – – – – – 583.5 18.9  
Table 8
3D detection results on the KITTI val set by removing GT Sampling only for the Pedestrian using Voxel-RCNN, Graph-RCNN, and CasA as the baseline with AP calculated by 40 
recall positions. † indicates our reproduced results. ‡ represents the results obtained by running the author’s source code. The best results are in bold..
 Method Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Runtime 
 Easy Mod. Hard mAP Easy Mod. Hard mAP Easy Mod. Hard mAP (ms)  
 Voxel-RCNN† [25] 92.53 85.03 82.56 86.71 66.35 59.06 54.02 59.81 89.52 72.62 68.32 76.82 40.0  
 +Remove GT Sampling for Ped. 92.44 85.13 82.68 86.75 67.79 63.93 58.53 63.42 91.94 72.25 67.94 77.38 40.3  
 Graph-Vo‡ [20] 93.27 86.07 83.12 87.49 67.42 61.76 56.96 62.05 91.46 73.17 68.87 77.83 40.0  
 +Remove GT Sampling for Ped. 93.19 85.81 82.97 87.32 72.18 64.65 59.89 65.57 91.33 72.49 68.24 77.35 37.4  
 CasA+V† [21] 93.21 86.37 83.93 87.84 73.95 66.62 59.97 66.85 92.78 73.94 69.37 78.70 32.6  
 +Remove GT Sampling for Ped. 92.98 86.33 83.82 87.71 76.91 69.74 62.77 69.81 93.77 74.32 71.36 79.82 38.7  
Table 9
3D detection results on the KITTI val set by removing GT Sampling only for the Car and Cyclist categories using Voxel-RCNN and CasA as the baseline with AP calculated by 40 
recall positions. The best results are in bold..
 Method Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Runtime 
 Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard (ms)  
 Voxel-RCNN [25] 92.53 85.03 82.56 66.35 59.06 54.02 89.52 72.62 68.32 40.0  
 +Remove GT Sampling for Car 92.14 82.46 80.09 64.24 58.64 53.92 73.75 56.24 52.02 39.6  
 +Remove GT Sampling for Cyc. 92.35 84.75 82.41 59.80 53.39 48.82 58.26 44.05 41.66 39.5  
 CasA+V [21] 93.21 86.37 83.93 73.95 66.62 59.97 92.78 73.94 69.37 32.6  
 +Remove GT Sampling for Car 92.85 83.91 83.31 68.28 63.18 57.99 89.13 74.50 70.16 31.2  
 +Remove GT Sampling for Cyc. 92.52 83.70 83.02 71.52 65.03 59.94 82.49 55.59 51.28 31.9  
different numbers of candidate boxes for different categories. Different 
combinations of 𝑁 and 𝑘 in the DNCB strategy are shown in the first 
row in Table  11, and we choose 𝑁=120000 and 𝑘=80000. For all the 
baselines, we set 𝑁=120000 and 𝑘=80000 (𝑁=60000 and 𝑘=80000 
for LoGoNet). Within a bounded parameter range, increasing 𝑁 and 
𝑘 in SDCB can slightly increase inference time. Fortunately, SDCB is 
necessary for detecting closely adjacent objects.
11 
4.5.7. Dynamic 𝑁 and 𝑘 for testing
Notably, DiffCandiDet also has Once-for-all properties [31]. For the 

most suitable 𝑁 and 𝑘 selected for training, we test and obtain the best 
𝑁 and 𝑘 for inference as shown in the second row in Table  12. We 
also choose 𝑁=120000 and 𝑘=80000. For all the baselines, we also set 
𝑁=120000 and 𝑘=80000 (𝑁=60000 and 𝑘=80000 for LoGoNet). Using 
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Table 10
3D detection results on the KITTI val set by applying different GT Sampling numbers only for the Pedestrian. using Voxel-RCNN as the baseline with AP calculated by 40 recall 
positions. The best results are in bold..
 Num Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Runtime 
 Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard (ms)  
 10 92.53 85.03 82.56 66.35 59.06 54.02 89.52 72.62 68.32 40.0  
 7 92.77 85.06 82.81 67.41 59.73 54.60 89.16 73.15 68.57 42.1  
 5 92.17 84.79 82.54 66.70 60.81 56.55 91.66 74.43 69.92 41.0  
 3 92.51 84.96 82.74 68.82 62.77 58.20 88.86 70.92 66.53 38.9  
 0 92.44 85.13 82.68 67.79 63.93 58.53 91.94 72.25 67.94 40.3  
Table 11
3D detection results with different 𝑁 and 𝑘 for training in DiffcandiDet with inference step 1 and 3 on the KITTI validation set for the car, pedestrian, and cyclist with AP 
calculated by 40 recall positions. The best results are in bold.
 Step 𝑁 𝑘 Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Rumtime 
 Easy. Mod. Hard. Easy. Mod. Hard. Easy. Mod. Hard. (ms)  
 

Step=1

60000 80000 92.53 85.36 82.91 65.18 59.67 54.10 92.97 74.80 70.09 66.5  
 90000 80000 92.58 85.26 82.85 67.10 60.11 53.85 92.74 74.48 69.76 68.5  
 90000 120000 92.51 85.15 82.99 71.45 64.07 57.59 93.20 73.37 70.03 71.9  
 120000 80000 92.19 83.34 82.80 72.56 64.26 57.63 92.21 74.09 69.39 68.8  
 120000 120000 92.31 85.31 82.96 69.96 62.89 56.61 91.13 72.89 68.33 72.2  
 

Step=3

60000 80000 92.08 85.07 82.34 69.94 63.78 57.84 92.45 74.35 71.07 132.8  
 90000 80000 92.47 84.97 82.60 70.78 64.05 57.00 92.67 74.50 71.15 134.2  
 90000 120000 92.40 85.03 82.85 71.95 65.76 59.03 92.72 75.61 71.26 134.3  
 120000 80000 92.49 85.13 82.94 72.35 65.73 59.27 92.87 75.98 71.41 134.2  
 120000 120000 92.45 85.12 83.07 72.25 64.97 59.20 92.95 75.03 71.31 136.1  
Table 12
3D detection results with different 𝑁 and 𝑘 for testing in DiffcandiDet with inference step 3 (the most suitable 𝑁=120000 and 𝑘=80000 selected for training) on the KITTI 
validation set for the car, pedestrian, and cyclist categories with AP R40. The best results are in bold.
 𝑁 𝑘 Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40) Runtime 
 Easy. Mod. Hard. Easy. Mod. Hard. Easy. Mod. Hard. (ms)  
 60000 80000 92.41 84.95 82.84 72.53 65.71 59.18 92.82 76.04 71.28 131.0  
 90000 80000 92.32 84.86 82.80 72.73 66.07 59.44 92.59 75.77 71.16 134.8  
 90000 120000 92.23 84.86 82.80 72.23 65.83 59.09 92.89 75.87 71.15 133.9  
 120000 80000 92.49 85.13 82.94 72.35 65.73 59.27 92.87 75.98 71.41 134.2  
 120000 120000 92.37 84.88 82.82 72.11 65.61 59.03 92.34 75.68 71.13 135.3  
Table 13
3D detection results with different box renewal threshold 𝜇 in DiffcandiDet when inference step is 3 on the KITTI validation set for the car, pedestrian, and cyclist categories with 
AP R40. The best results are in bold.
 Renewal Threshold 𝜇 Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40)
 Easy. Mod. Hard. Easy. Mod. Hard. Easy. Mod. Hard.  
 0.85 92.30 84.97 82.85 72.62 65.98 59.38 91.91 75.45 70.79 
 0.75 92.49 85.13 82.94 72.35 65.73 59.27 92.87 75.98 71.41 
 0.5 92.27 84.97 82.86 71.94 65.55 59.06 92.58 75.37 70.84 
 0.3 92.32 84.93 82.91 72.47 65.91 59.30 92.63 75.69 70.95 
 0.1 92.33 84.94 82.92 72.50 65.92 59.39 94.61 75.99 71.43 
smaller values for 𝑁 and 𝑘 during the inference process is also a good 
option.

4.5.8. Renewal threshold 𝜇
Retaining the centers of all predicted boxes during diffusion reason-

ing is not beneficial for inference. This is because, in addition to the GT 
center point distribution, there is noise in the center point distribution 
during inference, which is harmful to the recovery of the GT center 
point distribution. Therefore, we retain the GT distribution of center 
points from predicted boxes exceeding a renewal threshold 𝜇. We test 
the different sets of box renewal thresholds 𝜇 as shown in the third row 
in Table  13. We set 0.75 for the box renewal threshold and 0.1 is also 
a good choice.

4.6. Comparison with diffusion-based method

Compared to other diffusion-based methods [54,55], DiffCandiDet 
demonstrates significant superiority on both KITTI validation and test 
set as shown in Tables  3 and 14. The most critical reason is that 
12 
DiffCandiDet leverages the strengths of anchor-based methods and 
diffusion models.

4.7. Comparison with multi-class 3D object detection method

As shown in Table  15, we compare DiffCandiDet with existing multi-
class 3D object detection methods. Our method still achieves more 
pronounced advantages in category balance over mainstream multi-
class methods. This benefits from the category balance of the DSCB 
strategy and the iterative optimization of the diffusion probabilistic 
model.

4.8. Generalization capacity

As shown in Table  1, DiffCandiDet, DUCandiDet, and CUCandiDet 
can all be integrated into one-stage, two-stage, and multi-modal mod-
els, demonstrating excellent performance and generalization capacity 
in both single-class and multi-class 3D object detection tasks.
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Table 14
3D detection results on the KITTI validation set for the Car, Pedestrian, and Cyclist categories with AP calculated by 40 recall positions. DiffCandiDet outperforms all of the 
previous diffusion-based methods. The best results are in bold.
 Method Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40)
 Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard  
 DIff3Det [54] 89.45 80.86 77.41 – – – – – –  
 DiffRef3D [55] 92.89 84.77 82.64 69.70 63.07 57.70 93.33 74.20 69.63 
 DiffCandiDet-Vo (ours) 92.49 85.13 82.94 72.35 65.73 59.27 92.87 75.98 71.41 
 DiffCandiDet-Ca (ours) 92.43 85.54 83.22 81.07 73.70 68.34 94.51 75.03 70.62 
Table 15
3D detection results on the KITTI validation set for the car, pedestrian, and cyclist categories with AP calculated by 40 recall positions. DiffCandiDet achieves more significant 
advantages compared to competitive multi-class 3D object detection methods. The best results are in bold. † indicates our reproduced results. ‡ represents the results obtained by 
running the author’s source code. The best results are in bold..
 Method Car 3D (R40) Pedestrian 3D (R40) Cyclist 3D (R40)
 Easy Mod. Hard mAP Easy Mod. Hard mAP Easy Mod. Hard mAP  
 PSA-Det3D† [76] 91.34 80.53 78.09 83.32 68.35 63.09 57.09 62.84 92.23 74.11 69.97 78.77 
 CTA-Det† [77] 90.12 81.46 79.15 83.58 74.08 66.35 58.92 66.45 87.64 72.82 68.20 76.22 
 EQ-PVRCNN† [78] 92.63 85.41 82.97 87.00 66.78 59.23 54.34 60.12 93.34 75.71 71.11 80.05 
 LoGoNet† [23] 91.41 84.80 84.48 86.90 70.03 63.31 59.04 64.13 90.64 72.78 68.79 77.40 
 BSAODet† [13] 92.27 85.06 82.75 86.69 71.98 66.00 60.49 66.16 93.23 76.06 72.31 80.53 
 DiffCandiDet-Vo (ours) 92.49 85.13 82.94 86.85 72.35 65.73 59.27 65.78 92.87 75.98 71.41 80.09 
 DiffCandiDet-Ca (ours) 92.43 85.54 83.22 87.06 81.07 73.70 68.34 74.37 94.51 75.03 70.62 80.05 
Fig. 9. Visualization of 3D and BEV detection results on the KITTI dataset. (a) Corresponding image frame. (b) 3D detection results by CasA+V [21] using official CasA weights. 
(c) BEV detection results by CasA+V. (d) 3D detection results by DiffCandiDet-Ca with an inference step of 2. (e) BEV detection results by DiffCandiDet-Ca. In the visualization: 
The red boxes denote GT bounding boxes. The green boxes indicate the predicted car category. The blue boxes represent the predicted pedestrian category. The yellow boxes 
denote the predicted cyclist category. In particular, the white dashed ellipses in the image highlight numerous false negative detections predicted by CasA [21]. CasA struggles 
with accurate detection, particularly pedestrian detection. In contrast, DiffCandiDet-Ca demonstrates superior precision.
 
 
 
 
 
 
 
 
 
 
 
 

4.9. Quantitative analysis

The detection performance of CasA+V [21] is highly advanced and
continues to rank near the top on the official KITTI leaderboard. Even
so, the comparison between DiffCandiDet-Ca and CasA+V illustrates
how DiffCandiDet can surpass CasA in detection accuracy as shown in
Fig.  9. The first and third columns demonstrate that DiffCandiDet can
detect highly cluttered scenarios like pedestrians walking side by side
that CasA misses. This is primarily due to the fact that in traditional
anchor-based methods, anchors are uniformly distributed across the
spatial domain. During the non-maximum suppression (NMS) process,
redundant candidate boxes corresponding to neighboring objects are
filtered out prior to being fed into the second stage of the detection
pipeline. As a result, only a single prediction is retained from the shared
candidate boxes for each group of proximate objects, leading to poten-
tial missed detections. However, when the DSCB strategy is employed, a
 

13 
higher density of candidate boxes can coexist within the same localized 
region simultaneously. This increased density significantly reduces the 
likelihood of candidate boxes being eliminated by the NMS procedure, 
thereby enhancing the detection robustness. In the second column, 
DiffCandiDet detects distant cars that CasA overlooks. Additionally, in 
the third column, DiffCandiDet identifies a pedestrian leaning against a 
wall, which validates DiffCandiDet’s superior ability to capture detailed 
features and effectively differentiate closely neighboring objects.

4.10. Complexity analysis

Compared to the baseline, DiffCandiDet maintains identical training 
procedures as employed by the original algorithm. For two-stage base-
line, however, DiffCandiDet diverges from the original algorithm with 
its complexity showing a positive correlation to the number of inference 
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steps utilized. Specifically, if we consider the baseline algorithm’s 
complexity to be 𝑂(𝑚 + 𝑛), then for a given step 𝑘, the computational 
complexity of DiffCandiDet can be characterized as 𝑂(𝑚 + 𝑘 × 𝑛), 
where the computational complexity of the first-stage backbone is 
denoted by 𝑚, while the computational complexity of the second-stage 
backbone is represented by 𝑛. During the refinement process of the 
second stage, we will iterate 𝑘 steps to find more suitable center points 
of anchors. Therefore, the processing time increases linearly with the 
number of inference steps 𝑘. Designing new technologies to reduce 
time is a meaningful thing for future work while maintaining similar 
performance.

4.11. Limitations and future works

DiffCandiDet lies in its performance-latency trade-off: achieving bet-
ter performance necessitates progressively increasing the number of in-
ference steps, which notably escalates computational overhead [79,80]. 
This dependency makes it less practical for online detection scenarios 
where latency constraints prohibit extensive iterative refinement. For 
future work, we wish to explore adaptive step scheduling or lightweight 
denoising architectures to mitigate this bottleneck while preserving 
detection accuracy.

5. Conclusions

In this paper, we propose DiffCandiDet based on the diffusion model 
with Gaussian distributed center points, which leverages the power-
ful denoising and reconstruction capabilities of the diffusion model. 
Moreover, we also propose a Dynamic Super-dense Candidate Boxes 
strategy to enhance the initial IoU and achieve the balance of learning. 
In addition to Gaussian distribution, we further propose DUCandiDet 
and CUCandiDet to reduce the runtime consumption and improve the 
robustness. DiffCandiDet has achieved state-of-the-art performance on 
the KITTI validation set, especially in the Car and Pedestrian detection 
leaderboard.
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