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Abstract—Multimodal fusion widely uses convolutional layers
to capture local correlations and adjust feature dimensions.
However, the progressive expansion of the receptive field in
convolutional layers often compromises spatial context retention,
leading to the loss of fine details. Furthermore, the fixed-size ker-
nels typically used in standard convolution restrict the network’s
ability to capture multiscale contextual details. To address this
limitation, this article develops a dilated transformation-guided
unsupervised multimodal learning (DTUML) method to fuse
a high-resolution multispectral image (HR-MSI) and a low-
resolution hyperspectral image (LR-HSI), thereby generating
a high-resolution hyperspectral image (HR-HSI). Our DTUML
adopts a dual-stream encoder architecture to conduct multimodal
data, where one stream focuses on preserving spectral informa-
tion from LR-HSIs, while the other emphasizes the acquisition
of spatial details from HR-MSIs. These complementary features
are subsequently integrated to ensure spectral fidelity and retain
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spatial detail. Then, a convolutional layer restores dimensional
consistency and outputs an HR-HSI. Extensive experiments
demonstrate the effectiveness of DTUML, showing superior per-
formance and strong competitiveness compared to state-of-the-art
methods. The code is available at https://github.com/yuanchaosu/
TGRS-DTUML

Index Terms—Dilated convolution, hyperspectral and mul-
tispectral image (MSI) fusion, hyperspectral image super-
resolution, multimodal fusion, multimodal learning.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) are renowned for their

exceptional spectral resolution, capturing detailed spec-
tral information across numerous bands [1], [2], [3], [4].
However, this strength often comes at the expense of spatial
resolution, which is typically lower and limits the effective
utilization of the data in various applications [5], [6], [7],
[8]. Compared to HSIs, multispectral images (MSIs) are more
focused on retaining spatial details and are less expensive
to capture owing to the lower cost of multispectral sen-
sors [9], [10]. In recent years, MSI-HSI image fusion has
emerged as an important technique for enhancing the spatial
resolution of hyperspectral imagery [11]. This technology
enables hyperspectral image super-resolution by data fusion,
effectively leveraging the complementary information of both
modalities [12], [13], [14], [15]. Nowadays, HSI-MSI fusion
can be categorized into two types: supervised and unsupervised
approaches, depending on whether training samples need to
be provided [16], [17], [18]. Supervised fusion methods need
labeled training data to learn a mapping from low-resolution
HSIs (LR-HSIs) and high-resolution MSIs (HR-MSIs) to
output high-resolution HSIs (HR-HSIs) [9]. These methods
usually require paired training samples and ground truth
(GT) for learning rich spectral information from LR-HSI
and the fine spatial details from HR-MSIs [19], [20]. In
contrast, unsupervised fusion methods do not rely on labeled
samples, particularly useful in real scenarios where GTs are
unavailable or difficult to obtain [21]. Moreover, unsupervised
methods usually need to simulate physical imaging to pro-
duce HR-HSIs, which means that the data fusion typically
leverages spectral unmixing models to couple and constrain
the generation of HR-HSIs [17], [18], [22], [23]. Traditional
unsupervised fusion methods rely on the theories of statistics
and machine learning, such as sparse representation, nonneg-
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ative matrix (or tensor) factorization, and Bayesian inference
[22], [23], [24].

Recently, advancements in deep learning (DL) have sig-
nificantly advanced unsupervised HSI-MSI fusion, offering
powerful frameworks for automatically extracting and integrat-
ing complex spatial and spectral features from both modalities
[16], [25]. A wide range of novel DL-based fusion architec-
tures has emerged in recent years. These include unsupervised
convolutional neural networks (CNNs), generative adversarial
networks, and deep unrolling models [10], [23]. Additionally,
emerging Transformer-based frameworks have shown promise
in capturing long-range spectral dependencies, further enhanc-
ing fusion performance [26], [27]. However, the process of
unsupervised fusion refers to dense prediction problems, where
each pixel in the output must be estimated without direct
supervision. Additionally, most existing approaches attempt
to enlarge the receptive field by adding more layers or
using larger convolution kernels, which significantly increases
the number of parameters and computational burden. This
improvement in model understanding comes at the cost of
reduced stability and efficiency [9], [12], [24]. Overcoming
these limitations continues to be a focus in developing more
effective fusion algorithms.

To address the above limitations, we propose a dilated
transformation-guided unsupervised multimodal learning
(DTUML) approach to fuse LR-HSIs and HR-MSIs,
enhancing the network’s representation ability without
increasing additional parameter overhead. The main
contributions of DTUML can be summarized as follows.

1) The theory of dilated convolution is utilized to expand
the receptive field without increasing parameter over-
head, thereby enabling more accurate reconstruction of
spatial and spectral information.

Our new approach mitigates the limitation of receptive
fields where encountered in conventional convolutional
layers, opening a new branch for enhancing the deep
model’s generalization.

By the guidance of dilated Transformation, the hierar-
chical network can be more flexible to extract multiscale
information to improve fusion performances.

2)

3)

The remainder of this article is organized as follows.
Section II briefly reviews related works, referring to unsu-
pervised HSI-MSI fusion and dilated convolution. Section III
describes our DTUML in detail. In Section IV, we evalu-
ate the effectiveness and competitiveness of DTUML using
real remote sensing datasets. Finally, Section V concludes
the proposed DTUML and discusses directions for future
work.

II. RELEVANT WORKS
A. Unsupervised HSI-MSI Fusion

The mathematical framework of linear spectral unmixing
has promoted the advancement of unsupervised HSI-MSI
fusion [28]. From a data quality perspective, unsupervised
HSI-MSI fusion enhances the spatial resolution of the
original HSI and can be regarded as an effective strat-
egy for achieving HSI super-resolution [18]. Several studies
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have leveraged this framework to address the challenges of
fusing hyperspectral and multispectral data. For instance,
Kawakami et al. [29] combined spectral unmixing with cou-
pled tensor factorization to achieve an unsupervised method
for HSI-MSI fusion. Similarly, Yokoya et al. [30] utilized non-
negative matrix factorization to fuse HR-MSIs and LR-HSIs
to generate an HR-HSI. Wycoff et al. [31] proposed a matrix
factorization-based HSI-MSI fusion approach. Yi et al. [32]
integrated spectral unmixing with spatially sparse constraints
to enhance performance in retaining spatial details. Despite
their effectiveness, these methods primarily capture shallow
spatial features, which limit their ability to uncover intrinsic
pixel relationships and restrict their practical applicability in
complex scenarios.

The advancement of DL has further accelerated the
development of HSI-MSI fusion and hyperspectral image
super-resolution [33]. DL-based unsupervised methods have
emerged as a compelling alternative to traditional approaches,
offering enhanced adaptability and robust performance without
relying on paired training data [18], [21], [28]. These methods
often employ generative models, such as autoencoders, to
learn latent representations that effectively capture both spatial
and spectral characteristics of hyperspectral data [34], [35],
[36]. For example, some approaches embed spectral unmixing
principles within autoencoder architectures, enabling HR-
HSI reconstruction while maintaining physical interpretability
[18], [28]. Others leverage adversarial frameworks, such as
generative adversarial networks, to generate HR-HSIs by
aligning spatial and spectral distributions [37]. Additionally,
self-supervised learning techniques have been explored, allow-
ing models to generate pseudo-labels or utilize the intrinsic
structure of hyperspectral data for training [38]. These methods
further enhance feature extraction and fusion by incorporating
advanced attention mechanisms, such as spatial and channel
attention, resulting in more precise and robust super-resolution
across diverse scenarios [24], [28].

However, these fusion methods often rely on traditional
convolutional layers to capture spatial relationships between
pixels [9]. Traditional convolutions typically expand the recep-
tive field using pooling operations for downsampling, which
can reduce resolution and result in the loss of spatial details
[39]. In contrast, the dilated convolutions employed in our
DCDA expand the receptive field without downsampling,
effectively preserving spatial information. Furthermore, tradi-
tional convolutional layers often require stacking additional
layers to achieve a larger receptive field, which increases the
parameter count and risks model redundancy and overfitting.
Dilated convolutions address these challenges by leveraging
sparse connections and improving parameter efficiency while
maintaining robust performance.

B. Dilated Convolution

Dilated transformation offers a more efficient means to
expand the receptive field of a network without increasing
depth or filter size [40]. By introducing dilation rates, the
receptive field is expanded without increasing the number of
parameters or computational overhead, enabling the model
to capture both local and global contextual information [41].
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Fig. 1. Flowchart of DTUML. The CDCs guide the channel attention to compose the CDC-spectral encoder that aggregates spectral correlations from the
spectral domain. The PDCs and the spatial attention constitute the PDC-spatial encoder to capture spatial correlations between pixels. Here, H, h, W, and w
define the spatial sizes of images, while b and ¢ denote the spectral dimensions of ones.

Unlike traditional convolutional layers, which rely on pooling
operations to enlarge the receptive field and often lose spatial
details, dilated convolution preserves fine-grained details while
maintaining high-resolution outputs [42]. This characteristic
is especially beneficial for image super-resolution, where
preserving spatial details and reconstructing high-resolution
features are critical [43]. By capturing multiscale information
through adjustable dilation rates, dilated convolution enhances
the ability to model complex spatial dependencies, resulting
in more accurate and robust super-resolution results [44].
Additionally, its sparse connection design enhances parameter
efficiency, reducing the risk of overfitting while maintain-
ing high performance, making it a powerful tool in image
super-resolution tasks [45].

Although dilated convolution has been widely applied in
image and signal processing, most of these methods are
supervised, relying on large-scale paired datasets for training.
This dependency limits their generalizability to scenarios
where labeled data are scarce or unavailable. Moreover,
within remote sensing, studies utilizing dilated convolu-
tions to achieve unsupervised HSI-MSI fusion are still
scarce, leaving significant room for further exploration. The
dilated transformation-guided unsupervised multimodel learn-
ing framework can address key challenges such as preserving
fine spatial-spectral details, capturing multiscale features, and
enhancing the adaptability of models to diverse data distribu-
tions. Such new methods could bridge current research gaps
and significantly advance the applications of remote sensing.

C. Channel and Spatial Attention Mechanisms

The attention mechanism is a neural network module that
selectively focuses on the most informative parts of input data

[46], [47]. It assigns different weights to different regions,
channels, or features based on their relevance to the task,
allowing the model to emphasize critical information while
suppressing less important details [48]. Common forms of
attention include spatial attention, which highlights significant
regions in an image, and channel attention, which identi-
fies important feature channels or spectral bands [49]. For
hyperspectral and MSI fusion, attention mechanisms play
a crucial role in addressing the challenges of spectral and
spatial inconsistency. By applying spatial attention, the deep
model can focus on high-resolution spatial details from the
MSI. In contrast, spectral or channel attention enables the
preservation of the rich spectral signatures in HSIs. This
selective feature enhancement enables more accurate and bal-
anced fusion results while maintaining spatial sharpness and
spectral integrity. As a result, attention-based methods have
become increasingly popular in remote sensing applications
that demand high-quality fused imagery.

III. PROPOSED METHOD

The proposed DTUML adopts a dual-stream autoencoder
architecture for unsupervised multimodal learning, as illus-
trated in Fig. 1. Specifically, the deep network contains the
cascaded dilated convolution (CDC)-spectral encoder, parallel
dilated convolution (PDC)-spatial encoder, and two decoders.
The CDC-Spectral encoder is established by a CDC to
guide the channel attention, while the PDC-Spatial encoder
is built by a PDC to guide the spatial attention. The CDCB
and PDCB are employed to aggregate local correlations of
hyperspectral and MSIs, respectively. The channel and spatial
attention mechanisms can capture global correlations from
hyperspectral and MSIs, respectively. The CDC-Spectral and
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Fig. 2. Tllustrating dilated convolution increases the receptive field using the different dilation rates, where the calculations of the receptive fields are carried

out using (1) and (2).

PDC-Spatial encoders can implement feature embedding for
spectral and spatial information. The decoders are designed
to reconstruct an HR-HSI. In the MSI-HSI fusion framework,
the HR-MSI is responsible for delivering spatial information,
while the LR-HSI provides spectral information. To reduce the
loss of spatial details, a parallel convolution block is applied in
the spatial stream. In contrast, since the spectral stream focuses
solely on spectral information, a cascaded convolution block
is employed to better facilitate spectral feature embedding.

A. CDC-Spectral Encoder

The CDC-spectral encoder adopts CDCs to guide the chan-
nel attention for concerning spectral information in multimodal
learning. The CDCs use different dilation rates to capture mul-
tiscale features hierarchically. Additionally, the CDCs adopt
skip connections to allow earlier features to be concatenated
later in the block. This can preserve signal integrity, especially
when a signal passes through a sequence of transformations
that might degrade or distort it. Skip connections can prevent
the loss of signals by preserving and reintroducing the original
feature information into later stages.

The CDCs set dilation rates to 3 and 4, while their con-
volution kernels are set to 3 x 3. The kernel has “holes”
inserted between weights, allowing the convolution to cover a
larger receptive field without increasing the parameters. Fig. 2
illustrates a schematic demonstrating how the receptive field
is expanded in dilated convolution by configuring the dilation
rate. According to [40], [41], and [42], a k X k convolution
with dilation can be mathematically equivalent to an enlarged
convolution. Let K define the effective kernel size, and its
mathematical expression is defined as

K=k+@m-1k=-1) 6]

where k denote the convolution kernel size and 7 is the dilation
rate. RF denotes the effective receptive field of the current
layer, and it can be calculated by the following process:

RE=K+2@m-1). 2

As shown in Fig. 2, following (1), a standard 3 x 3
convolution can be dilated to the enlarged 7 x 7and 9 x 9
dilated convolutions when using 7 = 3 and n = 4. Meanwhile,

the effective receptive fields can be computed to RF = 11 and
RF = 15 by (2). Fig. 2 demonstrates that dilated convolution
effectively increases the receptive field while using a small
kernel size.

We use floating-point operations (FLOPs) to measure com-
putational complexity, focusing on the number of operations
performed per output pixel and multiplying that by the total
number of output pixels. Let the number of input and output
dimensions be di, and d,y, respectively. The FLOPs in terms
of LR-HSIs and HR-MSIs can be calculated as

FLOPsqsty = h - w - diy - dowt - K*
FLOPssty = H - W - dip - dowt - K. (3)

It can be clearly seen from observing (3) that the dilation
rate n does not affect the number of FLOPs. Actually, the
dilation rate only changes where the kernel samples input
values, not the number of computations performed. Therefore,
the number of parameters is determined solely by the kernel
size and the input and output dimensions. In the guided
layers, we combine ReL.U activations to enable the model
to better extract and refine semantic features. Additionally,
we adopt BatchNorm to stabilize the feature distribution and
reduce the overfitting risk. Meanwhile, skip connections are
adopted to reintroduce the original details into deeper layers,
allowing information to flow across layers to improve training
performance. The cascaded structure is displayed in the top
left corner of Fig. 1.

The channel attention of DTUML consists of an adaptive
average pooling (AdaptiveAvgPool) [50] and a stacked net-
work. Let C € R™>4 represent the spectral features obtained
from the CDCs, and the process of the channel attention can
be written as

C’ = AdaptiveAvgPool (C)
C” = ReLU (MLP (C"))
C"” = Sigmoid (MLP (C"))

C=CoC” 4

where © represents the Hadamard product and C e Rwxd
defines the features generated by the CDC-spectral encoder.
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B. PDC-Spatial Encoder

In the MSI modal, the PDCs in guided layers are similar
to those of the CDCs, where dilated rates are set to 3, 4, and
5 to obtain multiscale features. This design aims to enlarge
the receptive field further, as a larger receptive field is more
effective in preserving spatial details. Unlike acquiring spectral
information, extracting spatial information relies more heavily
on capturing contextual relationships. Therefore, we add the
dilated convolution layers with 7 = 5 in the PDCs to enhance
feature embedding for spatial information. The block of PDCs
is shown on the bottom left of Fig. 1.

Assuming that P; € RW*4 and P, € RFY*4 are two feature
matrices acquired from the two streams referring to the PDCs.
We concatenate P; and P, as the PDC features, and the process
is expressed as

P = Concat (P;,P,) W 5

where P € RFW*d W e R24%4 ig 3 learnable matrix used to
adjust the dimension of the features, and Concat(-) represents
the concatenation.

The spatial attention integrates average pooling and max-
pooling layers. The average pooling can highlight prominent
textures, while the max;pooling reflects the overall statistical
feature distribution. Let P € R”W* be the output of the spatial
attention, and its implementation can be written as

PMax = POOlMax (P)
PAve = POOIAve (P)
P = PO (Concat (Pyta, Pave) W) (6)

where W’ € R24%4 ig a learnable weight matrix, and P is the

features obtained by the PDC-spatial encoder.

C. Unsupervised Fusion in Decoders

According to the linear spectral mixture model, a hyper-
spectral or MSI can be unmixed by endmember signatures
and abundance fractions. Let Y € R™*? be an LR-HSI, and
X € RA"X¢ be an HR-MSI. Their related spectral mixtures
can be represented as

Y =AE, X=AE (7)

where A € R™*¢ define the endmember matrix of the LR-
HSI, E € Re*? describes abundances, and e represents the
number of endmembers. Similarly, A € R"*¢ and E € Re*¢
define the acquired endmembers and abundances associated
with the HR-MSI. Let Z € R"*¢ be an HR-HSI, and it can
degrade an LR-HSI and an HR-MSI, and the degenerations
can be expressed as

Y =PSF(Z), X=SRF(Z) ®)

where PSF(:) is the point spread function, and SRF() is the
spectral response function. We further expand A and E in ),
obtaining the following formulas:

Y = AAE = AZ

X = AEE = ZE )
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where A and E are the blurring factors of the SRF and
PSF, respectively. The formulars in (9) reveals a relationship
between AE and Z, implying that Z can be reconstructed from
AE.In (7), Aand A correspond to the hidden layers, and they
are estimated by optimization. After obtaining the features
in (4) and (6), we employ Softmax to activate abundance
fractions of LR-HSIs and HR-MSIs

A = Softmax (6)
A = Softmax (ﬁ)

where Softmax ensures the abundance values are constrained
in the 0 ~ 1. Moreover, Softmax ensures that the sum of
the elements of each column vector of the abundance matrix
is equal to one. This is a physical constraint of abundance.
Meanwhile, E and E in (7) are two learnable weight matrices
between the last reconstructed layer and a hidden layer.If we
regard each column of A as the output of a neuron in a linear
layer, and each row of E as the learnable weights of a neuron,
then Y = AE can be interpreted as a feedforward pass via
a fully connected (FC) layer. We use the FC layer in the
decoder of the spectral stream to learn E. The HR-HSI Z
can be reconstructed when E and A are available, and the
reconstruction can be written as

Z = AE

(10)

(1)

where Z is the output reconstructed HR-HSI, and it represents
the final fusion data using the proposed DTUML.

D. Loss Function

Minimizing reconstruction error (RE) is fundamental in
many unsupervised learning methods, as it encourages the
model to preserve essential information from the input. Con-
sidering DTUML uses an autoencoder architecture, the RE is
used as a base loss {grg

2 2
e = |X-X[ epv-¥],
where X € RAWx¢ and Y € R™*? are the reconstructions
of X and Y, respectively. In (12), || - || denotes the Frobenius
norm. a and § are two balance parameters. Using the estimated
matrices A, E, K and E obtained from the deep network, the
two reconstructed data ()/i and ?) can be calculated via matrix
multiplication.

Since each pixel in a HSI comprises a small number of
pure spectral bases, the abundance matrix A is expected to
be sparse. Kullback-Leibler (KL) divergence is employed to
promote this sparsity

t’KL—ZZ(slog( )+(1—s)1og(11__;‘)) (13)
i=1 j=1 "

where s is a sparsity hyperparameter with a small value close
to zero, and we set s = 0.0001 in this work, and g;; is an
element of A. Combining the losses in (12) and (13), the
objective function of DTUML can be written as

€ = ylrg + 6lkL

(14)

where y and ¢ are the balance coefficients. The pseudocode
of DTUML is provided in the Algorithm 1.

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 01,2026 at 02:33:12 UTC from |IEEE Xplore. Restrictions apply.



5535715

Algorithm 1 Pseudocode of the Proposed DTUML
Input: HR-MSI X and LR-HSI Y
Output: HR-HSI Z
1 for Epochs do
2 Set dilated rates and convolutional kernels by (1)
and (2).
3 Integrate the dilated convolution, ReLLU, and
BatchNorm layers to establish blocks.
4 C < Establish CDCs to address X.
5 C < Use (4) to address C.
6 Set n = 3 ~ 5 to the dilated convolutions in (1)
and (2).
7 Adopt the dilated convolution, ReLU, and
BatchNorm layers to establish blocks.
8 Use (5) to concatenate the features for PDCs.
9 P < Use the PDCs to address Y.
10 P < Use (6) to process P.
1 E and E < Use (7) to obtain weights.
12 A and A < Use (10) to update nodes.
13 Z <= Use (11) to reconstruct data.
14 Calculate the objective function ¢ by (12), (13),
and (14)
15 Minimize ¢ and update all weights.
16 end

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed DTUML is implemented using Python 3.10.9,
PyTorch 2.1.1, and CUDA 11.8. The workstation carries an
NVIDIA 4080 Super GPU. Since the exact number of land-
cover types present in the image is unknown, a larger number
of endmembers is used to avoid omissions and ensure the
model’s stability. Therefore, this work sets the number of
endmembers to 120. In model training, we use Adam [51]
as the optimizer and set the learning rate to 3 x 1073, with
the batch size being 64.

A. Evaluation Metrics

This study adopts several metric quantitative analyses
to evaluate model performance objectively. Specifically, we
evaluate the effectiveness of DTUML from different perspec-
tives to reduce individual differences and subjective bias.
The objective evaluation metrics mainly include the memory
consumption (Para) over 10000 iterations and the time con-
sumption (Times) per 1000 iterations, as well as the following
six evaluation indicators: peak signal-to-noise ratio (PSNR),
spectral angle mapper (SAM), root mean square error (RMSE),
structural similarity index measure (SSIM), efficiency relative
to a Gaussian signal (ERGAS), and universal image quality
index (UIQI). In the following quantitative analysis, an upward
arrow ““1” indicates that a higher value reflects better perfor-
mance, whereas a downward arrow “|” signifies that a lower
value indicates better performance.

The PSNR represents the ratio between the maximum
possible power of a data signal and the power of the RE.
It is commonly used to evaluate the reconstruction quality
of data across different spectral bands [52]. The SAM is
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commonly used to calculate the spectral angle between the
resulting image and the reference image, quantifying the
amount of spectral information preserved in individual pixels
[53]. The RMSE measures the degree of difference between
the reference image and the fused image. This metric is
widely used to evaluate the spectral quality of fused images.
The SSIM measures the similarity between two images from
three aspects: luminance, contrast, and structural information
[54]. The SSIM value typically ranges from O to 1, where 1
indicates perfect similarity, O indicates no linear correlation.
The ERGAS measures the overall spectral distortion between a
processed (e.g., fused or reconstructed) image and a reference
image [55]. A lower ERGAS value indicates better quality and
closer similarity to the reference image. UIQI is a general-
purpose image quality metric that models image distortion
based on human visual perception [56]. The UIQI value is
also usually the range of 0-1, and it is similar to the SSIM.

B. Datasets

This article mainly evaluates the fusion performance of
DTUML using five real remote sensing datasets. These
datasets were published by different countries, including
the Chikusei,! Houston University 2018,2 Washington DC,?
Tiangong-1,* and ZY-1 02D’ data. The Chikusei, Houston,
Washington DC, and Tiangong-1 datasets are common datasets
for testing MSI-HSI fusion performance. The four datasets
use the original HSI as the GT, and LR-HSIs and HR-MSIs
were obtained by scale degradation. This allows us to compare
the fused HR-HSI with the GT, enabling the quantitative
evaluation of the data fusion quality. The ZY-1 02D satellite
is equipped with a hyperspectral camera and a multispectral
camera, thereby providing two full-resolution images: the
ZY-1 02D MSI and ZY-1 02D HSI. However, it is worth
noting that the HSI and MSI are provided by two distinct
physical cameras, and there is no GT for assessing the data
quality. Therefore, a quantitative comparison of the fusion
results is not possible, and only a qualitative comparison can
be implemented as a supplement to other data experiments.

The Chikusei dataset was acquired by the Headwall hyper-
spectral sensor (VNIR-C) over Chikusei City, Japan [57]. The
original image has a spatial size of 2517 x 2335 pixels
and covers a spectral range of 363~1018 nm. To facilitate
the experiments, we extracted a subimage, and the size is
400 x 400 x 110. The RGB composition is as follows: red
(28th band), green (18th band), and blue (5th band).

The Houston 2018 dataset was released by the Hyperspec-
tral Image Analysis Laboratory for the 2018 IEEE GRSS Data
Fusion Contest [58]. Captured using the CASI-1500 sensor, the
dataset consists of 48 spectral bands with a spatial resolution
of 1 m, covering the spectral range of 380-1050 nm. After
removing noisy and water absorption bands, we selected a
subimage of size 400 x 400 x 46 for our experiments. Its

Uhttp://naotoyokoya.com/Download.html

Zhttps://github.com/YuxiangZhang-BIT/Data-CSHSI

3https://engineering. purdue.edu/biehl/MultiSpec/hyperspectral.html

4https://analysis.msadc.cn/org—portal/CMSDESP/dataset

5https://clrive. google.com/drive/folders/1JLCCB6Id5SR49HDLNSSsMISx1d
0fugRjO
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Tiangong-1 ZY-1 02D MSI-Camera ZY-1 02D HSI-Camera

Fig. 3. Hyperspectral remote sensing images were captured by different
sensors, with each scene filmed at different times and locations.

RGB composition is red (58th band), green (34th band), and
blue (19th band).

The Washington DC dataset was captured by the HYDICE
airborne sensor in 1995. It contains 210 spectral bands span-
ning the 400-2500 nm, with the spatial resolution of 2.5 m,
and the image size of 1280 x 307 pixels. In our experiments,
we used 191 bands after excluding 19 noisy bands. The RGB
composition of the Washington DC dataset is red (55th band),
green (25th band), and blue (15th band).

The Tiangong-1 dataset was collected by the hyperspectral
imager onboard the Tiangong-1 satellite [59]. A representative
subimage of size 240 x 240 Xx 54, covering the visible to
near-infrared spectrum, is used as the GT. The Tiangong-1 data
includes 64 effective spectral bands across the visible, near-
infrared, and shortwave infrared regions, spanning the 0.4—1
um range, with a spatial resolution of 10 m and a spectral
resolution of 10 nm. The RGB composition is red (29th band),
green (19th band), and blue (6th band).

The ZY-1 02D dataset was obtained from the China—Brazil
Earth Resources Satellite (CBERS) program. The satellite is
equipped with both hyperspectral and multispectral cameras,
enabling it to capture hyperspectral and MSIs of the same
scene. The CBERS series is widely known in China as
“ZY-1.” The hyperspectral camera integrates 166 bands
(76 VNIR, 90 SWIR) within 400-2500 nm and offers a
spatial resolution of 30 m with a 60 km swath [16]. The
multispectral camera covers 8 spectral bands (452-1047 nm)
and achieves a spatial resolution of 10 m and a swath width of
115 km to acquire HR-MSISs, both superior to its hyperspectral
counterpart [60]. The HSI and MSI data from the ZY-1
02D satellite maintain their original pixel dimensions and
radiometric quality. Since they have not been downsampled
or compressed from the original acquisition format, they are
considered full-resolution images.

The above datasets are shown in Fig 3. Table I lists the
spectral ranges and sizes of all the datasets used in this article.

C. Ablation Experiments

Table II presents the quantitative comparisons for the abla-
tion studies on skip connections and dilated convolutions

5535715

TABLE I

INFORMATION OF EXPERIMENTAL DATASETS, INCLUDING SPECTRAL
RANGES (NANOMETER) AND DATA SIZES

Data Spectral Range HR-HSI Size LR-HSI Size HR-MSI Size
Chikusei 363-1018 400 x400 x 110 25 x25 x 110 400 x400 x 8
Houston 2018 380-1050 400 x400 x 46 40 x40 x 46 400 x400 x 8
TianGong-1 434-2442 240 %240 x 56 20 x20 x 54 240 %240 x 8
Washington DC 400-2500 300 x300 x 191 30 x30 x 191 300 x300 x 8
ZY-1 02D MSI 452-1047 / / 300x300 x 8
ZY-1 02D HSI 400-2500 / 100 x100 x 166 /

TABLE I

EFFECTIVENESS EVALUATION FOR THE MODULES OF THE DILATED
CONVOLUTION BLOCKS ACROSS THE FOUR REAL DATASETS.
“WITHOUT SCS” INDICATES THAT SKIP CONNECTIONS
ARE NOT USED, WHILE “WITHOUT DCS” MEANS
THAT DILATED CONVOLUTION-BASED GUIDED
LAYERS ARE NOT EMPLOYED

Datasets Methods SAM| PSNRT ERGAS] RMSE|  SSIMt
Without SCs  0.6954  53.6447 0.5497 0.0027 0.9942

Chikusei Without DCs 0.6925 53.6837 0.5435 0.0027 0.9943
DTUML 0.6889 53.7215 0.5479 0.0027 0.9945

Without SCs ~ 0.8898  51.3659 0.4601 0.0028 0.9960

Houston Without DCs 0.8936 50.7834 0.4728 0.0028 0.9959
DTUML 0.8525 52.0920 0.4501 0.0027 0.9961

Without SCs 0.9281 44.7588 0.1860 0.0052 0.9871

Tiangong-1 Without DCs 0.9197 45.0147 0.1845 0.0052 0.9870
DTUML 0.9139 45.0844 0.1815 0.0051 0.9873

Without SCs 1.8842 43.1526 1.1824 0.0092 0.9798

‘Washington D.C Without DCs 1.9678 43.0970 1.1824 0.0099 0.9793
DTUML 1.4028 44.0473 0.8842 0.0065 0.9873

across different datasets. By evaluating the results using met-
rics such as the SAM, PSNR, ERGAS, RMSE, and SSIM,
we observe that incorporating skip connections consistently
improves model performance. In Table II, “without SCs”
indicates that the proposed approach does not employ skip
connections, while “without DCs” denotes that the proposed
method removes dilated convolutions. The dilated convolution
blocks, designed with a multipath structure, enhance the
overall model capability by effectively enlarging the receptive
field of each convolution kernel. This enables the network to
capture richer spatial correlation features and more effectively
preserve spatial information in the HR-MSI. Furthermore, the
results in Table II demonstrate that the use of skip connections
not only improves fusion performance but also enhances the
stability of the deep model.

Considering the loss function comprises four balance
parameters, the components constrained by these parameters
all have a certain impact on model training. To investigate the
influence of losses, we conduct a series of ablation studies.
Fig. 4 illustrates the impact of varying parameters (a, 83, ¥,
and 0) on the performance of the fusion process, utilizing
the TianGong-1 dataset to conduct the ablation experiment.
In Fig. 4(a), we can observe that with ¥ and ¢ fixed at 1,
the fusion achieves the optimal performance when @ and 8
are also set to 1. Fig. 4(b) demonstrates that the best fusion
performance is achieved when y and § are set to y = 1000
and 6 = 100, where @ = 8 = 1. In the subsequent experiments,
we empirically set y =1, § = 1, v = 1000 and ¢ = 100.

Additionally, to further assess the influence of the RE and
KL components in the loss function on model training, we
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Fig. 4. Assessment quality of data fusion under parameter settings, regarding
a, B, ¥, and 6. (a) Fusion accuracy with different @ and S. (b) Accuracy
comparison for setting different y and ¢ values.
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Fig. 5. (a) Relationship between reconstruction loss {rg and total loss ¢.
(b) Relationship between KL loss {k;. and total loss €.

evaluated their respective losses separately. When any of vy
and ¢ is set to 0, the corresponding term in the loss function
becomes inactive and no longer contributes to the optimization.
The loss function will remain the KL term if y = 0, while the
loss function only keeps the RE component if 6 = 0. Fig. 5
gives the comparison of convergence behaviors. In Fig. 5(a),
{rg means that the loss function only adopts the RE loss. In
contrast, Fig. 5(b) compares the convergences using the KL
loss and total loss. According to Fig. 5, we can see that both
the RE and KL terms in the loss function contribute positively
to model training, thereby accelerating convergence.

The number of endmembers also affects the fusion per-
formance, making it a hyperparameter that requires user
specification. To evaluate the impact of endmember quantity
on data fusion, we configure DTUML with varying numbers
of endmembers and conduct experiments on four datasets:
Chikusei, Houston, Washington DC, and TianGong-1, as
shown in Fig. 6. The PSNR and SAM values are presented
for the Chikusei, Houston, Washington DC, and TianGong-
1 datasets under varying endmember numbers: 20, 40, 60,
80, 100, 120, 140, 160, and 180. It is clear that as the
number of endmembers increases from 20 to 120, both PSNR
and SAM values improve progressively. However, when the
number increases beyond 120 to 180, performance begins to
degrade. This indicates that setting the number of endmembers
to 120 yields the best performance. To ensure comprehensive
coverage of land-cover categories, the number of endmembers
is consistently set to 120 in the subsequent experiments.

D. Baselines

This article selected a series of representative baseline
HSI-MSI fusion algorithms for comparison, including ten

(a)
—@— Houston 2018

(b)
—a— Tiangong-1

== Chikusei ~—%— Washington DC

Fig. 6. Spider charts of PSNR and SAM for different datasets under different
endmember numbers. (a) PSNR values for setting different endmember
numbers. (b) SAM values when using different endmember numbers.

representative methods. These methods comprise four tra-
ditional method: CNMF [30] and CSTF [61]; as well
as five DL-based methods: HyCoNet [36], UDALN [28],
EU2ALN [62], CUCaNet [35], MIAE [63], uHNTC [26], and
CYformer [64].

In all experiments, we adopted a rigorously controlled
setup to ensure the reproducibility and fairness of the results.
Through theoretical analysis and quantitative validation, we
systematically compared the performance of the proposed
DTUML approach with these baseline algorithms. To assess
fusion results, real HSI and MSI image component datasets
containing multiple sets of data were used in the experiments.
Furthermore, we conducted multiple experiments to evaluate
our model’s reliability.

E. Comparative Experiments

To intuitively present the experimental results, we plotted
performance comparison charts of different algorithms under
various input scenarios. Additionally, four different heatmaps
were used to visually illustrate the performance of each
method. As shown in Figs. 7-9, the fusion results on different
datasets are illustrated. In these Figures, each row presents
different visualizations.

1) The first row shows RGB composite images, allowing a
direct visual comparison of each method’s performance
in terms of spatial texture and overall color fidelity.
The second row gives SAM heatmaps, which measure
the angular error between the reconstructed and GT
spectra. Redder areas indicate higher errors, while bluer
regions reflect more accurate spectral reconstruction.
The third row displays mean relative absolute error
(MRAE) heatmaps, which represent the relative pixel-
level deviation. A redder color suggests a larger
difference from the GT values, whereas a bluer tone
indicates closer numerical accuracy.

The fourth row presents the residual heatmap for the
10th spectral band, highlighting pixel-wise differences
at that specific band. Dark blue denotes small residuals,
and dark red signifies larger errors, further validating the
modeling precision of each method on individual bands.

2)

3)

4)
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Fig. 7. Fusion results with the Chikusei dataset (first row) RGB compositions (R:58, G:38, B:20), (second row) heatmap of SAM error, (third row) heatmap
of MRAE, (fourth row) residual heatmap at band 10. The error ranges of the three groups are [0, 6.5], [0, 0.15], and [0, 0.009], respectively.

TABLE III

QUALITY EVALUATION FOR DIFFERENT FUSION METHODS, USING THE
CHIKUSEI DATASET. THE BEST VALUES ARE SHOWN IN BOLD

Method ~ SAM|  PSNRT ERGAS, RMSE|, SSIM? UIQIf  Para (KB) Time (S)
CNMF 09178  47.7283  2.2246 00041 09909 09976 385420 105.34
CSTF 0.1860  49.5640  2.1228 00037 09917 09986 384560 95.22
HyCoNet 07755 514062  1.6993 00032 09933 09988 478470 264.48
UDALN 07440 514933  1.1454 00030 09943 09991 449850 106.99
EU2ADL 10338 482605  1.2634 00045 09940 09984 429440 243.07
CUCaNet 07261 528972 14914 00029 09941 09990 452500 250.26
MIAE 09079 488311  0.6467 00041 09937 09981 449820 244.12
uHNTC 06918 483990  1.3059 00035 09927 09976 454570 289.81
CYformer 07218  49.5479  0.7295 00044 09932 09981 487825 292.18
DTUML  0.6889  53.7215  0.5479 0.0027 09945 09992 412100 230.80

TABLE IV

COMPARISON OF FUSION RESULTS ON THE HOUSTON 2018 DATASET. THE
BEST VALUES ARE SHOWN IN BOLD

Method ~ SAM| PSNRT ERGAS| RMSE| SSIM{ UIQIf Para (KB) Time (S)
CNMF 0.9958 49.4645 0.5202 0.0032 0.9955 0.9995 335690 122.36
CSTF 1.3905 47.1056 0.6861 0.0044 0.9940 0.9993 332456 124.80
HyCoNet 1.6214 44.6362 0.5347 0.0053 0.9935 0.9991 355432 139.54
UDALN 0.9375 50.2141 0.4965 0.0030 0.9957 0.9996 383210 164.36
EU2ADL 2.2065 41.7955 1.2183 0.0076 0.9903 0.9982 419200 152.18
CaCuNet 0.9396 50.3476 0.4945 0.0030 0.9955 0.9997 367654 154.62
MIAE 0.9830 43.9933 0.6174 0.0048 0.9956 0.9991 366543 147.65
uHNTC 0.9210 49.0160 0.5720 0.0035 0.9941 0.9993 445840 330.52
CYformer 0.9511 50.0512 0.7052 0.0038 0.9945 0.9986 464130 359.63
DTUML 0.8525 52.0920 0.4501 0.0027 0.9961 0.9997 362100 152.87
Additionally, the evaluation metrics presented in

Tables III-VI, including the PSNR, SAM, RMSE, SSIM,
UIQI, Parameter calculation (Para), and Computation Time.
The evaluation offers a relatively objective and reliable
assessment of the performance differences among various
fusion methods in terms of spatial detail preservation, spectral
consistency, and accuracy.

Fig. 7 indicates that the proposed DTUML demonstrates
superior performance in spatial reconstruction accuracy, spec-
tral fidelity, and numerical error control. Compared to other
methods, the images produced by DTUML most closely
resemble the reference images in terms of object boundaries,
texture details, and overall tone. In the SAM heatmap, most
regions appear in blue, with sparse and scattered red areas,

TABLE V
COMPARISON OF FUSION RESULTS ON THE WASHINGTON DC DATASET

Method ~ SAMJ  PSNRT  ERGAS] RMSE] SSIM{ UIQIt  Para (KB)  Time (S)
CNMF 21178 389928 13749 0.0100 09729 09983 356230 142.36
CSTF 2.1599 38.154 1.2346 0.0083 0.9543 0.9987 354850 109.44
HyCoNet 1.9628  42.5683 1.2495 0.0097 0.9800 0.9986 388200 153.20
UDALN 19115  40.5550  0.9589 0.0073 09869  0.9993 442850 204.36
EU2ADL  1.9495 423939  1.2484 0.0096 09808  0.9986 441760 174.01
CaCuNet 19970 417620  1.2658 0.0097 09785  0.9986 422870 188.46
MIAE 1.9646  42.1673 1.2587 0.0097 0.9794 0.9986 397200 165.23
uHNTC ~ 2.0434  40.1107  0.8958 0.0094 09341 09966 475820 24851
CYformer 19280 422157  0.9356 0.0070 09657 09982 472131 254.43
DTUML 1.4028  43.9051 0.8842 0.0065 0.9875 0.9989 422100 185.63

TABLE VI

COMPARISON OF FUSION RESULTS ON THE TIANGONG-1 DATASET

Method SAM] PSNRT  ERGAS| RMSE| SSIMT  UIQIf  Para (KB)  Time (S)
CNMF 0.9811  43.5272 0.5314 0.0061 0.9858 0.9995 308540 23.51
CSTF 1.1325  41.7881 0.6219 0.0069 0.9845 0.9995 328500 30.80
HyCoNet 1.4002  38.3884 0.8810 0.0101 0.9760  0.9991 342500 35.70
UDALN 0.9924  44.0405 0.3725 0.0051 0.9873 0.9995 415230 50.29
EU2ADL 1.2685  39.9253 0.7493 0.0084 0.9809 0.9992 455930 50.20
CUCaNet 11612 41.8710 0.2090 0.0069 0.9855 0.9995 365820 42.98
MIAE 1.0967  42.6798 0.5864 0.0064 0.9846  0.9994 351420 40.53
uHNTC 0.9673  43.2571 0.5290 0.0069 0.9848 0.9993 454260 52.69
CYformer  0.9582  42.2872 0.6961 0.0062 0.9835 0.9995 479850 55.87
DTUML 0.9139  45.0844 0.1815 0.0051 0.9873  0.9996 342100 3541

indicating that DTUML effectively preserves spectral consis-
tency. The MRAE heatmap shows that the proposed DTUML
maintains low relative errors across most regions. Residual
maps indicate that DTUML maintains high accuracy in mod-
eling individual spectral bands, with only a few scattered red
regions, reflecting its stability across different bands.

Table III reveals significant differences in the perfor-
mance of various methods on the HSI-MSI fusion task.
Specifically, a lower SAM value indicates a closer match
between the reconstructed and GT spectra. Although CSTF
achieved an exceptionally low SAM of 0.1860, the SAM
values for other methods range between 0.7 and 1.0. In this
experiment, DTUML achieved a SAM of 0.6889, reflect-
ing commendable spectral reconstruction accuracy. DTUML
achieved the highest PSNR value of 53.7215, substantially
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Fig. 8. Fusion results with the Houston 2018 dataset (first row) RGB compositions (R:45, G:30, B:14), (second row) heatmap of SAM error, (third row)
heatmap of MRAE, (fourth row) residual heatmap at band 10. The error ranges of the three groups are [0, 6.5], [0, 0.15], and [0, 0.009], respectively.
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Fig. 9. Fusion results with the Tiangong-1 dataset (first row) RGB compositions (R:25, G:16, B:3), (second row) heatmap of SAM error, (third row): heatmap
of MRAE. (Fourth row) Residual heatmap at band 10. The error ranges of the three groups are [0, 6.5], [0, 0.15], and [0, 0.009], respectively.

outperforming other methods, which highlights its strong
capability in detail preservation and noise suppression. Addi-
tionally, the ERGAS score of DTUML is 0.5479, significantly
better than EU2ADL (1.2634) and MIAE (0.6467), indicating
excellent error control. The lowest RMSE value further con-
firms that our DTUML has less information loss than other
fusion methods.

As illustrated in Fig. 8, the comparative results between
the DTUML and the other fusion approaches demonstrate
that DTUML achieves remarkable performance across mul-
tiple evaluation metrics. Notably, in urban environments, it
effectively preserves intricate textures. DTUML consistently
maintains a low SAM, even in complex architectural envi-
ronments and high-contrast regions, exhibiting minimal red
bias. It achieves low relative absolute error across most areas,
ensuring high fidelity in pixel-level reconstruction. Further-
more, the residuals across all spectral bands remain minimal,

highlighting its effectiveness in preserving the integrity of
multiwavelength spectral information.

Table IV shows that DTUML achieves the best performance
with a SAM value of 0.8525, indicating minimal spectral
distortion. Its PSNR score of 52.0920 highlights a clear advan-
tage in detail preservation and noise suppression, significantly
outperforming other methods. Although DTUML does not
achieve the top score in ERGAS, it attains the highest values in
RMSR, SSIM, and UIQI. Together, Fig. 8 and Table IV further
validate the effectiveness and competitiveness of DTUML.

Fig. 10 highlights the superior fusion performance of
DTUML on the Washington DC dataset. A comparison of
the SAM heatmaps across various algorithms reveals that
DTUML’s map is predominantly characterized by blue tones,
with very limited red regions, indicating consistently low
spectral angle errors, even in complex or high-contrast areas,
and a spectral reconstruction that closely approximates the GT.
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Fig. 10. Fusion results with the Washington DC dataset (first row) RGB compositions (R:50, G:30, B:16), (second row) heatmap of SAM error, (third row)
Heatmap of MRAE, (fourth row) residual heatmap at band 10. The error ranges of the three groups are [0, 6.5], [0, 0.15], and [0, 0.009], respectively.

Furthermore, the MRAE heatmap demonstrates that DTUML
achieves low relative errors across the vast majority of pix-
els. The residual maps reinforce this observation: DTUML’s
residuals are primarily deep blue, with only sparse red occur-
rences, underscoring its effectiveness in preserving spectral
information. By contrast, traditional methods such as CNMF
and CSTF tend to produce widespread errors in challeng-
ing scenes, while some DL-based approaches exhibit better
performance.

As presented in Table V, DTUML achieves a SAM value
of 1.4028, substantially lower than those of all competing
methods, underscoring its superior capability in preserving
spectral fidelity. Its PSNR score of 43.9051 is the high-
est among the compared fusion approaches, highlighting
DTUML’s effectiveness in restoring fine details while simul-
taneously suppressing noise. DTUML attains the highest
scores in both SSIM (0.9875) and UIQI (0.9989), affirming
its advantages in maintaining both structural and perceptual
quality. While DTUML registers a marginally higher RMSE
than UDALN, it consistently outperforms UDALN across all
other key evaluation metrics, demonstrating a more balanced
and comprehensive fusion performance. Fig. 10 and Table V
further demonstrate the effectiveness and advantages of our
DTUML on the Washington DC dataset.

Fig. 10 presents the comparison results of DTUML on the
Tiangong-1 dataset. In the RGB composite images, DTUML
accurately restores the colors and textures of various land
features, including buildings, roads, and vegetation. The SAM
heatmap shows that most of the imaging area appears blue,
indicating that DTUML effectively preserves spectral infor-
mation. In the MRAE heatmap, DTUML exhibits low relative
errors, achieving high prediction accuracy across the majority
of pixels and significantly outperforming other fusion methods.
In the residual maps for the Tiangong-1 dataset, DTUML’s
results are predominantly deep blue, with only a few scattered
red points, demonstrating its ability to achieve high-precision
spectral reconstruction.

Table VI presents the quantitative comparison between
DTUML and other competing methods. DTUML achieves a
SAM value of 0.9139, lower than all other fusion approaches,
indicating superior spectral accuracy. Its PSNR score of
45.0844 is also the highest among the evaluated methods,
reflecting strong capabilities in detail preservation and noise
suppression. Additionally, DTUML yields an ERGAS value of
0.1815, which is significantly better than those achieved by the
other methods. Although DTUML and UDALN share the same
RMSE value of 0.0051, DTUML consistently outperforms
UDALN in all other metrics. With SSIM and UIQI scores
of 0.9873 and 0.9996, respectively, DTUML demonstrates
excellent structural fidelity. The results in Table VI confirm
that DTUML achieves optimal or near-optimal performance
across all key indicators, including SAM, PSNR, ERGAS,
RMSE, SSIM, and UIQI, highlighting its effectiveness in
hyperspectral image fusion. The qualitative and quantitative
comparison results presented in Fig. 10 and Table VI clearly
demonstrate that our new approach outperforms other methods
in preserving data quality.

To provide a clearer comparison of image quality between
DTUML and other methods, Fig. 11 presents the PSNR
values for each spectral band across different approaches. As
shown in Fig. 11, our proposed DTUML consistently achieves
higher PSNR values across all spectral bands in experiments
on the four datasets, demonstrating its stable and significant
advantage in preserving the quality of fused data.

As is well known, DL inevitably involves some degree of
information loss. Considering that dilated convolutions can
alter data dimensions, we selected three representative land-
cover types from the ZY-1 02D data scene to validate the
fidelity of spectral information during the DTUML fusion
process. These land-cover types are: mountain, water, and
grass. Fig. 12 compares the spectral information of the original
LR-HSI and the fused HR-HSI. The result in Fig. 12 shows
that, although there is some subtle loss of spectral information,
the distinctive characteristics of the *land-cover types are well
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Fig. 12. Comparison of spectral curves, corresponding to the original LR-HSI
and the fusion result of DTUML. (Top) Original LR-HSI. (Bottom) HR-HSI
obtained by DTUML.

preserved. The spectral shape is not significantly distorted,
and this data quality can substantially reduce the burden on
downstream tasks.

We used our previously developed Transformer-based clas-
sification method [65] to classify the original LR-HSI,
HR-MSI, and HR-HSI fused by DTUML. Since the original
LR-HSI lacks a corresponding GT, we scaled the GT to
facilitate selecting training samples and conducting accuracy
analysis for the LR-HSI. In this experiment, we randomly
selected 10% of the samples from each land-cover class in the
GT for training, with the remaining samples used for testing.
Fig. 13 provides the classification maps for the correspond-
ing LR-HSI, HR-MSI, and HR-HSI. To assess classification
accuracy, we used OA, AA, and Kappa as evaluation metrics.
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LR-HSI

HR-MSI DTUML

Fig. 13. Classification maps. The GT map was obtained from field surveys,
and its size matches that of the original HR-MSI. Since the original LR-HSI
does not have a corresponding GT, we scaled this GT to facilitate the selection
of training samples and accuracy analysis for the LR-HSI.

TABLE VII

COMPARISON OF CLASSIFICATION ACCURACY. USING THE ORIGINAL
LR-HSI, THE ORIGINAL HR-MSI, AND OUR FUSED HR-HSI

OA AA Kappa

Origial LR-HSI 91.73%  89.26%  89.51%
Origial HR-MSI 54.58%  30.17%  49.06%
Fused HR-HSI of DTUML ~ 94.88%  93.05%  93.23%

Table VII lists the OA, AA, and Kappa coefficients for the
corresponding LR-HSI, HR-MSI, and HR-HSI. From Fig. 13
and Table VII, it is evident that fusing the original LR-HSI
and HR-MSI before HSI classification significantly improves
classification performance. The experiments on the ZY-1 02D
dataset demonstrate that our DTUML also obtains satisfactory
fusion results in cross-sensor tasks.

V. CONCLUSION

This article proposes DTUML for fusing MSIs and HSIs.
By employing dilated convolutions, the proposed DTUML
effectively expands the receptive field without increasing com-
putational overhead, enabling the model to capture both local
and global spatial-spectral features. This design further ensures
the preservation of spectral fidelity from LR-HSIs and spatial
detail from HR-MSIs, achieving a balanced and high-quality
fusion. Extensive experiments on multiple datasets demon-
strate that the proposed DTUML consistently outperforms
state-of-the-art fusion methods, delivering superior spatial and
spectral reconstruction. The guidance of dilated transformation
not only mitigates limitations such as restricted receptive fields
but also enhances the model’s ability to extract fine-grained
multiscale information. Overall, the proposed approach offers
an effective and flexible solution for HSI-MSI fusion without
requiring large amounts of paired training data. Since the
main focus of this work is to verify that the guidance layer
built with dilated convolution can significantly enhance fusion
performance, we only employ channel attention and spatial
attention to capture global correlations. In future work, we plan
to explore a contrastive learning strategy to further enhance the
generalization capability across domains.

ACKNOWLEDGMENT

The authors would like to express gratitude to the Associate
Editor and the Anonymous Reviewers for their constructive
suggestions, which have greatly enhanced the quality of this
article. Additionally, they would like to thank Dr. Haoyang
Yu and Jia Jia from the Center for Hyperspectral Imaging in

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 01,2026 at 02:33:12 UTC from |IEEE Xplore. Restrictions apply.



SU et al.: DTUML FOR HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION

Remote Sensing, Dalian Maritime University, for providing the
ZY-1 02D dataset, which was used to evaluate the real-world
utility of DTUML.

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Z.Li, K. Zheng, L. Gao, N. Zi, and C. Li, “Feature reconstruction guided
fusion network for hyperspectral and LiDAR classification,” IEEE Trans.
Geosci. Remote Sens., vol. 63, 2025, Art. no. 3636047.

Z.Han, J. Yang, L. Gao, Z. Zeng, B. Zhang, and J. Chanussot, “Subpixel
spectral variability network for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 63, 2025, Art. no. 5504014.

H. Gao, R. Sheng, Y. Su, Z. Chen, S. Xu, and L. Gao,
“Multiscale segmentation-guided fusion network for hyperspectral image
classification,” IEEE Trans. Image Process., vol. 34, pp. 6152-6167,
2025.

Z. Yang, N. Zheng, and F. Wang, “DSSFN: A dual-stream self-attention
fusion network for effective hyperspectral image classification,” Remote
Sens., vol. 15, no. 15, p. 3701, Jul. 2023.

Y. Su, L. Gao, A. Plaza, X. Sun, M. Jiang, and G. Yang, “SRViT:
Self-supervised relation-aware vision transformer for hyperspectral
unmixing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 36, no. 10,
pp. 17585-17598, Oct. 2025.

Y. Su et al., “DAAN: A deep autoencoder-based augmented network for
blind multilinear hyperspectral unmixing,” IEEE Trans. Geosci. Remote
Sens., vol. 62, 2024, Art. no. 5512715.

B. Pan, Q. Qu, X. Xu, and Z. Shi, “Structure—Color preserving network
for hyperspectral image super-resolution,” /EEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 5520512.

H. Gao, Z. Chen, and F. Xu, “Adaptive spectral-spatial feature fusion
network for hyperspectral image classification using limited training
samples,” Int. J. Appl. Earth Observ. Geoinf., vol. 107, Mar. 2022, Art.
no. 102687.

W. Chen, K. Shang, Y. Wang, W. Qi, S. Ding, and X. Zhang, “A
mixed convolution and distance covariance matrix network for fine
classification of corn straw cover types with fused hyperspectral and
multispectral data,” Int. J. Appl. Earth Observ. Geoinf., vol. 134, Nov.
2024, Art. no. 104213.

J. Xu et al., “FusGAT: Graph attention-based fusion network for unsu-
pervised hyperspectral image super-resolution,” IEEE Geosci. Remote
Sens. Lett., vol. 22, pp. 1-5, 2025.

L. Li, H. He, N. Chen, X. Kang, and B. Wang, “SLRCNN: Integrating
sparse and low-rank with a CNN denoiser for hyperspectral and mul-
tispectral image fusion,” Int. J. Appl. Earth Observ. Geoinf., vol. 134,
Nov. 2024, Art. no. 104227.

C. Zhu, T. Zhang, Q. Wu, Y. Li, and Q. Zhong, “An implicit transformer-
based fusion method for hyperspectral and multispectral remote sensing
image,” Int. J. Appl. Earth Observ. Geoinf., vol. 131, Jul. 2024, Art. no.
103955.

C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral super-
resolution by coupled spectral unmixing,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 3586-3594.

C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W.-K. Ma,
“Hyperspectral super-resolution: A coupled tensor factorization
approach,” IEEE Trans. Signal Process., vol. 66, no. 24, pp. 6503-6517,
Dec. 2018.

M. Xu, J. Mao, Z. Mo, X. Fu, and S. Jia, “Spectral modality-aware
interactive fusion network for HSI super-resolution,” in Proc. ACCV,
2025, pp. 301-317.

H. Yu, Z. Ling, K. Zheng, L. Gao, J. Li, and J. Chanussot, “Unsupervised
hyperspectral and multispectral image fusion with deep spectral-spatial
collaborative constraint,” IEEE Trans. Geosci. Remote Sens., vol. 62,
2024, Art. no. 5534114.

X. Feng et al., “Single space object image super resolution reconstruct-
ing using convolutional networks in wavelet transform domain,” in Proc.
IEEE 3rd Int. Conf. Electron. Technol. (ICET), May 2020, pp. 862-866.
K. Zheng, L. Gao, D. Hong, B. Zhang, and J. Chanussot,
“NonRegSRNet: A nonrigid registration hyperspectral super-resolution
network,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no.
5520216.

J. Zou, W. He, H. Wang, and H. Zhang, “SAM-CTMapper: Utilizing
segment anything model and scale-aware mixed CNN-transformer facil-
itates coastal wetland hyperspectral image classification,” Int. J. Appl.
Earth Observ. Geoinf., vol. 139, May 2025, Art. no. 104469.

[20]

(21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

5535715

R. Dian and S. Li, “Hyperspectral image super-resolution via subspace-
based low tensor multi-rank regularization,” [EEE Trans. Image
Process., vol. 28, no. 10, pp. 5135-5146, Oct. 2019.

J. Li et al., “Deep learning in multimodal remote sensing data fusion:
A comprehensive review,” Int. J. Appl. Earth Observ. Geoinformation,
vol. 112, Aug. 2022, Art. no. 102926.

N. Chen et al., “Fusion of hyperspectral-multispectral images join-
ing spatial-spectral dual-dictionary and structured sparse low-rank
representation,” Int. J. Appl. Earth Observ. Geoinf., vol. 104, Dec. 2021,
Art. no. 102570.

C. Zhu, R. Dai, L. Gong, L. Gao, N. Ta, and Q. Wu, “An adaptive multi-
perceptual implicit sampling for hyperspectral and multispectral remote
sensing image fusion,” Int. J. Appl. Earth Observ. Geoinf., vol. 125,
Dec. 2023, Art. no. 103560.

B. Tu, Q. Ren, J. Li, Z. Cao, Y. Chen, and A. Plaza, “NCGLF2: Network
combining global and local features for fusion of multisource remote
sensing data,” Inf. Fusion, vol. 104, Apr. 2024, Art. no. 102192.

J. Li, K. Zheng, L. Gao, Z. Han, Z. Li, and J. Chanussot, “Enhanced deep
image prior for unsupervised hyperspectral image super-resolution,”
IEEE Trans. Geosci. Remote Sens., vol. 63, 2025, Art. no. 5504218.
X. Cao, Y. Lian, K. Wang, C. Ma, and X. Xu, “Unsupervised hybrid
network of transformer and CNN for blind hyperspectral and multispec-
tral image fusion,” IEEE Trans. Geosci. Remote Sens., vol. 62, 2024,
Art. no. 5507615.

X. Cao, Y. Lian, J. Li, K. Wang, and C. Ma, “Unsupervised multi-
level spatio-spectral fusion transformer for hyperspectral image super-
resolution,” Opt. Laser Technol., vol. 176, Sep. 2024, Art. no. 111032.
J. Li, K. Zheng, J. Yao, L. Gao, and D. Hong, “Deep unsupervised blind
hyperspectral and multispectral data fusion,” IEEE Geosci. Remote Sens.
Lett., vol. 19, pp. 1-5, 2022.

R. Kawakami, Y. Matsushita, J. Wright, M. Ben-Ezra, Y. Tai,
and K. Ikeuchi, “High-resolution hyperspectral imaging via matrix
factorization,” in Proc. CVPR, Jun. 2011, pp. 2329-2336.

N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528-537, Feb.
2012.

E. Wycoft, T.-H. Chan, K. Jia, W.-K. Ma, and Y. Ma, “A non-negative
sparse promoting algorithm for high resolution hyperspectral imaging,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013,
pp. 1409-1413.

C. Yi, Y-Q. Zhao, and J. C.-W. Chan, “Hyperspectral image super-
resolution based on spatial and spectral correlation fusion,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 7, pp. 4165-4177, Jul. 2018.

J. Jiang, H. Sun, X. Liu, and J. Ma, “Learning spatial-spectral prior for
super-resolution of hyperspectral imagery,” IEEE Trans. Comput. Imag.,
vol. 6, pp. 1082-1096, 2020.

Y. Qu, H. Qi, and C. Kwan, “Unsupervised sparse Dirichlet-net for
hyperspectral image super-resolution,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., Jun. 2018, pp. 2511-2520.

J. Yao, D. Hong, J. Chanussot, D. Meng, X. X. Zhu, and Z. Xu, “Cross-
attention in coupled unmixing nets for unsupervised hyperspectral
super-resolution,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Jun. 2020,
pp. 208-224.

K. Zheng et al., “Coupled convolutional neural network with adap-
tive response function learning for unsupervised hyperspectral super
resolution,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 3,
pp. 2487-2502, Mar. 2021.

J. Liu, H. Zhang, J.-H. Tian, Y. Su, Y. Chen, and Y. Wang, “R2D2-GAN:
Robust dual discriminator generative adversarial network for microscopy
hyperspectral image super-resolution,” IEEE Trans. Med. Imag., vol. 43,
no. 11, pp. 4064-4074, Nov. 2024.

D. Hong, J. Yao, C. Li, D. Meng, N. Yokoya, and J. Chanussot,
“Decoupled-and-coupled networks: Self-supervised hyperspectral image
super-resolution with subpixel fusion,” IEEE Trans. Geosci. Remote
Sens., vol. 61, 2023, Art. no. 5527812.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261-2269.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2015,
pp. 1-13.

T. Wu, S. Tang, R. Zhang, J. Cao, and J. Li, “Tree-structured Kronecker
convolutional network for semantic segmentation,” in Proc. IEEE Int.
Conf. Multimedia Expo (ICME), Mar. 2018, pp. 940-945.

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 01,2026 at 02:33:12 UTC from |IEEE Xplore. Restrictions apply.



5535715

[42] Y-J. Ma, H.-H. Shuai, and W.-H. Cheng, “Spatiotemporal dilated
convolution with uncertain matching for video-based crowd estimation,”
IEEE Trans. Multimedia, vol. 24, pp. 261-273, 2022.

Z. Huang, L. Wang, G. Meng, and C. Pan, “Image super-resolution via
deep dilated convolutional networks,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2017, pp. 953-957.

K. Chang, M. Li, P. L. K. Ding, and B. Li, “Accurate single image super-
resolution using multi-path wide-activated residual network,” Signal
Process., vol. 172, Jul. 2020, Art. no. 107567.

Z. Zhang, X. Wang, and C. Jung, “DCSR: Dilated convolutions for
single image super-resolution,” IEEE Trans. Image Process., vol. 28,
no. 4, pp. 1625-1635, Apr. 2019.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 7132-7141.

L. Fang, M. Hou, B. Huang, G. Chen, and J. Yang, “DCAFusion:
A novel general image fusion framework based on reference image
reconstruction and dual-cross attention mechanism,” Inf. Sci., vol. 698,
Apr. 2025, Art. no. 121772.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2015, pp. 1-9.

S. Woo, J. Park, J.-Y. Lee, and 1. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 1-17.

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2018, pp. 8759-8768.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015, pp. 8759-8768.
F. Palsson, J. R. Sveinsson, M. O. Ulfarsson, and J. A. Benediktsson,
“Quantitative quality evaluation of pansharpened imagery: Consistency
versus synthesis,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3,
pp. 1247-1259, Mar. 2016.

F. A. Kruse et al, “The spectral image processing system
(SIPS)—Interactive visualization and analysis of imaging spectrom-
eter data,” Remote Sens. Environ., vol. 44, nos. 2-3, pp. 145-163,
May 1993.

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81-84, Mar. 2002.

L. Alparone, S. Baronti, A. Garzelli, and F. Nencini, “A global
quality measurement of pan-sharpened multispectral imagery,”
IEEE Geosci. Remote Sens. Lett., vol. 1, no.4, pp.313-317,
Oct. 2004.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

N. Yokoya and A. Iwasaki, “Airborne hyperspectral data over Chikusei,”
Space Appl. Lab., Univ. Tokyo, Tokyo, Japan, Tech. Rep. SAL-2016-5-
217, 2016.

B. Le Saux, N. Yokoya, R. Hansch, and S. Prasad, “2018 IEEE
GRSS data fusion contest: Multimodal land use classification [tech-
nical committees],” IEEE Geosci. Remote Sens. Mag., vol. 6, no. 1,
pp. 52-54, Mar. 2018.

L. Kang et al.,, “Scene classification dataset using the Tiangong-1
hyperspectral remote sensing imagery and its applications,” Nat. Remote
Sens. Bull., vol. 24, no. 9, pp. 1077-1087, 2020.

J. Jia, H. Yu, C. Wang, K. Zheng, J. Li, and J. Hu, “Spectral-spatial
collaborative pretraining framework with multiconstraint cooperation
for hyperspectral-multispectral image fusion,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 18, pp. 11610-11622,
2025.

S. Li, R. Dian, L. Fang, and J. M. Bioucas-Dias, “Fusing hyperspectral
and multispectral images via coupled sparse tensor factorization,” IEEE
Trans. Image Process., vol. 27, no. 8, pp. 4118-4130, Aug. 2018.

L. Gao, J. Li, K. Zheng, and X. Jia, “Enhanced autoencoders with
attention-embedded degradation learning for unsupervised hyperspectral
image super-resolution,” IEEE Trans. Geosci. Remote Sens., vol. 61,
2023, Art. no. 5509417.

J. Liu, Z. Wu, L. Xiao, and X.-J. Wu, “Model inspired autoencoder
for unsupervised hyperspectral image super-resolution,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5522412.

S. Chen, L. Zhang, and L. Zhang, “Cyclic cross-modality interaction
for hyperspectral and multispectral image fusion,” IEEE Trans. Circuits
Syst. Video Technol., vol. 35, no. 1, pp. 741-753, Jan. 2025.

M. Jiang et al., “GraphGST: Graph generative structure-aware trans-
former for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 62, 2024.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Yuanchao Su (Senior Member, IEEE) received
the Ph.D. degree from Sun Yat-sen University,
Guangzhou, China, in 2019.

Since 2024, he has joined the Department of Com-
puter and Information Science, University of Macau,
Macau, China, as a MYSP Post-Doctoral Fellow.
From 2018 to 2019, he was a Visiting Researcher
with the Department of Electrical Engineering and
Computer Science, The University of Tennessee,
Knoxville, Knoxville, TN, USA. Since 2019, he has
been serving at the Department of Remote Sensing,
College of Geomatics, Xi’an University of Science and Technology, Xi’an,
China, where he is an Associate Professor and a Doctoral Supervisor. His
current research interests include deep learning, data fusion, hyperspectral
unmixing, remote sensing image processing, and graph neural networks.

Dr. Su has been a Senior Member of the IEEE Geoscience and Remote
Sensing Society since 2022. He was awarded the 2023 Macau Young Scholars
Program (MYSP). Moreover, he was also awarded Shaanxi Province Youth
Science and Technology Star. He also serves as a reviewer and a guest editor
for some international journals.

Sheng Li received the B.S. and M.Sc. degrees
from Xi’an University of Science and Technology,
Xi’an, China, in 2021 and 2025, respectively. He is
currently pursuing the Ph.D. degree with the State
Key Laboratory of Integrated Service Networks,
School of Telecommunications Engineering, Xidian
University, Xi’an.

His main research interests include deep learning
and multimodal data fusion.

Yicong Zhou (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from Tufts
University, Medford, MA, USA, in 2010.

He is a Professor at the Department of Com-
puter and Information Science, University of Macau,
Macau, China. His research interests include image
processing, computer vision, and artificial intelli-
gence.

Dr. Zhou is a fellow of the Society of Photo
Optical Instrumentation Engineers (SPIE) and was
recognized as one of “Highly Cited Researchers” in
2020, 2021, 2023, and 2024. He serves as a Senior Area Editor for IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
and an Associate Editor for IEEE TRANSACTIONS ON CYBERNETICS, IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, and
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Lianru Gao (Senior Member, IEEE) received the
B.S. degree in civil engineering from Tsinghua Uni-
versity, Beijing, China, in 2002, and the Ph.D. degree
in cartography and geographic information systems
from the Institute of Remote Sensing Applications,
Chinese Academy of Sciences (CAS), Beijing, in
2007.

He is currently a Professor with the Key Labora-
tory of Computational Optical Imaging Technology,
Aerospace Information Research Institute, CAS. He
is also a Visiting Scholar with the University of
Extremadura, Céceres, Spain, in 2014, and Mississippi State University
(MSU), Starkville, MS, USA, in 2016. His research focuses on hyperspectral
image processing and information extraction.

Dr. Gao is a Fellow of the Institution of Engineering and Technology. He
was awarded the Outstanding Science and Technology Achievement Prize
of the CAS in 2016 and won the Second Prize of the State Scientific and
Technological Progress Award in 2018. He received the 2021 Outstanding
Paper Award at the IEEE Workshop on Hyperspectral Image Processing:
Evolution in Remote Sensing (WHISPERS). He is an Associate Editor of
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and /ET
Image Processing.

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 01,2026 at 02:33:12 UTC from |IEEE Xplore. Restrictions apply.



SU et al.: DTUML FOR HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION

Mengying Jiang received the Ph.D. degree from the
School of Electronic and Information Engineering,
Xi’an Jiaotong University, Xi’an, China, in 2025.
She is currently a Postdoctoral Fellow with the
Department of Computer and Information Science,
University of Macau, Macau, China. Her primary
research interests include machine learning, graph
neural networks, foundation models, bioinformatics,
and hyperspectral image processing and analysis.

Xu Sun (Member, IEEE) received the B.S. degree
in mathematics and applied mathematics from
Tsinghua University, Beijing, China, in 2006, and
the Ph.D. degree in cartography and geographical
information systems from the University of Chinese
Academy of Sciences, Beijing, in 2011.

He is an Associate Researcher with the Aerospace
Information Research Institute, Chinese Academy
of Sciences, Beijing. His research interests include
hyperspectral image processing, artificial intel-
ligence algorithms, and high-resolution remote
sensing image information mining.

5535715

Haiwei Li received the B.S., M.S., and Ph.D.
degrees in photogrammetry and remote sensing from
Central South University, Changsha, China, in 2009,
2012, and 2016, respectively.

He is an Associate Researcher with the Key
Laboratory of Spectral Imaging Technology, Xi’an
Institute of Optics and Precision Mechanics, Chinese
Academy of Sciences, Xi’an, China. His research
interests include vicarious calibration of the hyper-
spectral remote sensor, hyperspectral image quality
evaluation, and radiometric normalization.

Enke Hou received the B.S. and M.Sc. degrees from
Xi’an Mining Institute (now renamed Xi’an Univer-
sity of Science and Technology), Xi’an, China, in
1984 and 1987, respectively, and the Ph.D. degree
from China University of Mining and Technology,
Beijing, China, in 2003.

He is a Professor and a Doctoral Supervisor at the
College of Geology and Environment, Xi’an Univer-
sity of Science and Technology. He is the Academic
Leader of the Mineral Resource Prospecting and
Exploration discipline at the university and heads
the scientific and technological innovation team in coal geology theory and
methods. He is primarily engaged in research on coal geology and mine
geology, mine water hazard prevention and control, geoscience information
technology, and its geological applications.

Dr. Hou was a member of China Coal Industry Technology Committee,
a member of the Coal Geology Expert Committee of China National Coal
Association, a member of the Coal Geology Professional Committee of both
the Geological Society of China and China Coal Society, a member of the
Water Hazard Prevention and Control Professional Committee of China Coal
Industry Safety Science and Technology Society, and a Standing Council
Member of Shaanxi Provincial Coal Society.

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 01,2026 at 02:33:12 UTC from IEEE Xplore. Restrictions apply.



