Tao QIAN錢濤 Emeritus Professor 
http://scholar.google.co.uk/citations?user=FQ6tQe4AAAAJ&hl=en

Distinguished Professor, University of Macau 

Full Professor, University of Macau 

Head of Dept of Math, Full Professor ,University of Macau 

Associate Professor, University of Macau 

Senior Lecturer, Lecturer (English system) , University of New England, Australia 

Research Fellow, Flinders University of South Australia, Australia 

Research Fellow, Macquarie University, Australia 

Research Fellow, Institute of Systems Sciences, the Chinese Academy of Sciences 
Active Research Grants are with blue color
Australia:
Austria:
Belgium:
China P.R.: An incomplete list includes
Czech Republic:
Finland:
France:
Germany:
Hong Kong:
Italy:
The Netherland:
New Zealand:
Norway:
Poland:
Portugal:
Sweden:
USA:
Australia:
Belgium:
Canada:
China P.R.:
Finland:
France:
Germany:
Hong Kong:
Portugal:
Sweden:
The Netherland:
Taiwan:
USA:
Introduction: AFD is a new decomposition model that decomposes a given signal/function into a sum of monocomponents (signals of nonnegative analytic phase derivative) with fast convergence in energy. Iteration based on AFD gives rise to a conditional solution of the nbest rational approximation: a long standing open algorithm problem.
Refereed Journal Papers  187 
Refereed Edited Books and Journal Special Issues  10 
Refereed Book Chapters  12 
Refereed Conference Proceedings  16 
TOTALLY Published  225 
Articles with their titles in blue have links to their respective PDF files.
*187  [WQLG] X. Y. Wang, T. Qian, I. T. Leong, Y. Gao, TwoDimensional FrequencyDomain System Identification, IEEE Transactions on Automatic Control, 65(2), 577590. 
*186  [Q2020]T. Qian, Reproducing Kernel Sparse Representations in Relation to Operator Equations. Complex Anal. Oper. Theory 14 (2020), no. 2, 1–15. 
*185  [DMQ] P. Dang, W. X. Mai, T. Qian, Fourier spectrum of Clifford Hp spaces on Rn+1+ for 1≤p≤∞. J. Math. Anal. Appl. 483 (2020), no. 1, 123598, 19 pp. 
*184  [CDQ2] Q. H. Chen, P. Dang, T. Qian, Spectra of rational orthonormal systems. Sci. China Math. 62 (2019), no. 10, 1961–1976. 
*183  [DLQ2] G. T. Deng, H. C. Li, T. Qian, Fourier spectrum characterizations of Hardy spaces Hp on tubes for 0<p<1. Complex Anal. Oper. Theory 13 (2019), no. 6, 2605–2625. 
*182  [DHQ] G. T. Deng, Y. Huang, T. Qian, PaleyWienertype theorem for analytic functions in tubular domains. J. Math. Anal. Appl. 480 (2019), no. 1, 123367, 20 pp. 
*181  [MRQZ] W. Mi, H. M. Rao, T. Qian, S. M. Zhong, Identification of discrete Hammerstein systems by using adaptive finite rational orthogonal basis functions. Appl. Math. Comput.361 (2019), 354–364. 
*180  [WQ2] Y. B. Wang, T. Qian, Adaptive Fourier decomposition in Hp, Math. Methods Appl. Sci. 42 (2019), no. 6, 2016–2024. 
*179  [LZQ2] Y. T. Li, T. Qian, A Novel 2D Partial Unwinding Adaptive Fourier Decomposition Method with Application to Frequency Domain System Identification, Mathematical Methods in the Applied Sciences, 2019, 42(9), 31233135. 
*178  [LZQ] Y. T. Li, L. M. Zhang, T. Qian, 2D Partial Unwinding – A Novel NonLinear Phase Decomposition of Images, IEEE Transactions on Image Processing, 2019, 28(10), 47624773. 
*177  [QWM] T. Qian, J. Z. Wang, W. X. Mai, An Enhancement Algorithm for Cyclic Adaptive Fourier Decomposition, Applied and Computational Harmonic Analysis, 47(2), 516525. 
*176  [DKQS2] B. H. Dong, K. I. Kou, T. Qian, I. Sabadini, The Inverse Fueter Mapping Theorem for Axially Monogenic Functions of Degree k, J. Math. Anal. Appl. 2019, 476 (2), 819–835. 
*175  [DengLQ] G. T. Deng, H. C. Li, T. Qian, Hardy Space Decompositions of Lp(Rn) for 0<p<1 with Rational Approximation, Complex Var. Elliptic Equ. 2019, 64 (4), 606–630. 
*174  [MQ5] W. X. Mai, T. Qian, Rational Approximation in Hardy Spaces on Strips, Complex Var. Elliptic Equ. , 2018, 63(12), 1721–1738. 
*173  [QY3] T. Qian, Q.X. Yang, Wavelets and Holomorphic Functions, Complex Analysis and Operator Theory, 2018, 12(6), pp. 14211442. 
*172  [Q20] T. Qian, A Novel Fourier Theory on Nonlinear Phases and Applications, ADVANCES IN MATHEMATICS (CHINA), 2018, 47(3), pp. 321347. (in Chinese). 
*171  [DMNQ] P. Dang, J. Mourão, J.P. Nunes, T. Qian, Clifford coherent state transforms on spheres, Journal of Geometry and Physics, 2018, 124, pp. 225232. 
*170  [GKQ] Y. Gao, M. Ku, T. Qian, Fast algorithm of adaptive Fourier series, Mathematical Methods in the Applied Sciences, 2018, 41(7), pp. 26542663. 
*169  [LDQ2] H.C. Li, G.T. Deng, T. Qian, Fourier Spectrum Characterizations of Hp Spaces on Tubes Over Cones for 1≤p≤∞, Complex Analysis and Operator Theory, 2018, 12(5), pp.11931218. 
*168  [LQ3] Y.F. Li, T. Qian, Reconstruction of analytic signal in Sobolev space by framelet sampling approximation, Appl. Anal., 2018, 97(2), pp. 194209. 
*167  [DLQ] P. Dang, H. Liu, T. Qian, Hilbert Transformation and Representation of the ax+b Group, Canad. Math. Bull., 2017, 61(1), pp. 7084. 
*166  [MQ4] W.X. Mai, T. Qian, Aveiro method in reproducing kernel Hilbert spaces under complete dictionary, Mathematical Methods in the Applied Sciences, 2017, 40(18). pp. 119. 
*165  [BDQ] L. Baratchart, P. Dang, T. Qian, HardyHodge Decomposition of Vector Fields in Rn, Transactions of the American Mathematical Society, 2017, 370(3). pp. 20052022. 
*164  [TQ] L.H. Tan, T. Qian, Extracting Outer Function Part from Hardy Space Function, Science China Mathematics, 2017, 60 (11): 23212336. 
*163  [ACQS2] D. Alpay, F. Colombo, T. Qian, and I. Sabadini, Adaptative Decomposition: The Case of the DruryArveson Space,Journal of Fourier Analysis and Applications, 2017, 23(6), 14261444. 
*162  [DQC] P. Dang, T. Qian, Q. H. Chen, Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere，Advances in Applied Clifford Algebras, 2017, 27(4), 29853013. 
*161  [GKQW] Y. Gao, M. Ku, T. Qian, J. Z. Wang, FFT formulations of adaptive Fourier decomposition, Journal of Computational and Applied Mathematics, 2017, 324: 204–215. 
*160  [CDQ] Q. H. Chen, P. Dang, T. Qian, A Frame Theory of Hardy Spaces with the Quaternionic and the Clifford Algebra Settings, Advances in Applied Clifford Algebras, 2017, 27(2): 1073–1101. 
*159  [KKQ] U. Kähler, M. Ku, T. Qian, Schwarz Problems for PolyHardy Space on the Unit Ball, Results in Mathematics, 2017, 71(34): 801–823. 
*158 
[ZKDQ] Y. H. Zhang, K. I. Kou, G. T. Deng, T. Qian,The generalized matsaev theorem on growth of subharmonic functions admitting a lower bound in Rn, Complex Variables and Elliptic Equations, 2017, 62(5)：642–653. 
*157  [ACQS] D. Alpay, F. Colombo, T. Qian, I. Sabadini, Adaptive orthonormal systems for matrixvalued functions , Proceedings of the American Mathematical Society, 2017, 145(5)：2089–2106. 
*156  [MNQ] J. Mourão, J. P. Nunes, T. Qian, Coherent State Transforms and the Weyl Equation in Clifford Analysis, Journal of Mathematical Physics, 2017, 58(1): 116. 
*155  [ZQMD] L. M. Zhang, T. Qian, W. X. Mai, P. Dang, Adaptive Fourier decompositionbased Dirac type timefrequency distribution, Mathematical Methods in the Applied Sciences, 2017, 40(8), 28152833. 
*154  [BMQ] L. Baratchart, W.X. Mai, T. Qian, Greedy Algorithms and Rational Approximation in One and Several Variables, In: Bernstein S., Kaehler U., Sabadini I., Sommen F. (eds) Modern Trends in Hypercomplex Analysis. Trends in Mathematics, pp: 1933, 2016. 
*153  [DQ] G.T Deng, T. Qian, Rational approximation of Functions in Hardy Spaces, Complex Analysis and Operator Theory, 2016, 10(5), pp. 903920. 
*152  [YDQ] Y. Yang , P. Dang, T. Qian, Tighter Uncertainty Principles Based on Quaternion Fourier Transform, Advances in Applied Clifford Algebras, 2016, 26(1)：479497. 
*151  [DQY] P. Dang, T. Qian, Y. Yang, Extrastrong uncertainty principles in relation to phase derivative for signals in Euclidean spacs, Journal of Mathematical Analysis and Applications, 2016, 437(2)：912940. 
*150  [LDQ] H. C. Li, G. T.Deng, T. Qian, Hardy space decomposition of on the unit circle: 0<p<1, Complex Variables and Elliptic Equations: An International Journal, 2016, 61(4): 510523. 
*149  [QT] T. Qian, L. H. Tan, Backward shift invariant subspaces with applications to band preserving and phase retrieval problems,Mathematical Methods in the Applied Sciences,2016, 39(6): 15911598. 
*148  [Q] T. Qian, TwoDimensional Adaptive Fourier Decomposition, Mathematical Methods in the Applied Sciences, 2016, 39(10) : 24312448. 
*147  [BCQ] L. Baratchar, S. Chevillard, T. Qian, Minimax principle and lower bounds in H2 rational approximation, Journal of Approximation Theory, 2016, 206: 1747. 
*146  [DKQS] B. H. Dong, K. I. Kou, T. Qian, I. Sabadini, On the inversion of Fueter’s theorem, Journal of Geometry and Physics, 2016, 108: 102116. 
*145  [ACQS] D. Alpay, F. Colombo,T. Qian, I. Sabadini, The H infinity functional calculus based on the Sspectrum for quaternionic operators and for ntuples of noncommuting operators, Journal of Functional Analysis, 2016, 271(6), 15441584. 
*144  [YQL] Q. X. Yang, T. Qian, P. T. Li, FeffermanStein decomposition for Qspaces and microlocal quantities, Nonlinear Analysis: Theory, Methods &Applications, 2016,145: 2448. 
*143  [CQLMZ] Q. H. Chen, T. Qian, Y. Li, W. X. Mai, X. F. Zhang, Adaptive Fourier tester for statistical estimation, Mathematical Methods in the Applied Sciences,2016, 39(12): 34783495. 
*142  [ZDQ] Y. H. Zhang, G. T. Deng, T. Qian, Integral representations of a class of harmonic functions in the half space, Journal of Differential Equations,2016, 260(2): 923936. 
*141  [MDZQ] W. X. Mai, P. Dang, L. M. Zhang, T. Qian, Consecutive minimum phase expansion of physically realizable signals with applications, Mathematical Methods in the Applied Sciences,2016, 39(1): 6272. 
*140  [MQL] W. Mi, T. Qian, S. Li, Basis pursuit for frequencydomain identification, Mathematical Methods in the Applied Sciences, 2016, 39(3): 498–507. 
*139  [KMNQ] W. D. Kirwin, J. Mourao, J. P. Nunes, T. Qian, Extending coherent state transforms to Clifford analysis, Journal of Mathematical Physics, 2016, 57(10), 103505, 10 pp. 
*138  [YDQ] Y. Yang, P. Dang, T. Qian, Stronger uncertainty principles for hypercomplex signals, Complex Variables and Elliptic Equations, 2015, 60(12), pp.16961711. 
*137  [DDQ] P. Dang, J.Y. Du, T. Qian, Boundary value problems for periodic analytic functions, Boundary value problems, 2015, 143, pp.128. 
*136  [LQS] X. Lyu, T. Qian, B.W. Schulze, Order filtrations of the edge algebra, J. Pseudo Differ. Oper. Appl. 2015, 6(3), 279305. 
*135  [TQC] L. H. Tan, T. Qian, Q. H. Chen, New aspects of Beurling–Lax shift invariant subspaces, Applied Mathematics and Computation, 2015, 256, 257266. 
*134  [CQ] X. D. Chen, T. Qian, Estimation of hyperbolically partial derivatives of of rhoharmonic quasiconformal mappings and its applications, Complex Variables and Elliptic Equations. An International Journal, 2015, 60(6), 875892. 
*133  [MoQM] Y. Mo, T. Qian, W. Mi, Sparse Representation in Szegö Kernels through Reproducing Kernel Hilbert Space Theory with Applications, International Journal of Wavelet, Multiresolution and Information Processing, 2015, 13(4), 1550030, 20pp. 
*132  [MoQMC] Y. Mo, T. Qian, W. X. Mai, Q. H. Chen, The AFD Methods to Compute Hilbert Transform, Applied Mathematics Letters, 2015, 45: 1824. 
*131  [QT] T. Qian, L. H. Tan, Characterizations of Monocomponents: the Blaschke and Starlike types, Complex Analysis and Operator Theory, 2015, 117, DOI 10.1007/s1178501504916. 
*130  [CQS] D. C. Chang, T. Qian, W. Schulze, Corner Boundary Value Problems, Complex Analysis and Operator Theory, 2015, 9(5), 11571210. 
*129  [WjQ] J. X. Wang, T. Qian, Approximation of Functions by Higher Order Szegö Kernels I. Complex Variable Cases, Complex Variables and Elliptic Equations, 2015, 60(6), 733747. 
*128  [ChenQTan] Q. H. Chen, T. Qian, L. H. Tan, Constructive Proof of BeurlingLax Theorem, Chinese Annals ofMathematics, Series B, 2015, 36(1), 141146. 
*127  [YDQ] Y. Yang, P. Dang, T. Qian, Spacefrequency analysis in higher dimensions and applications, Annali di Matematica Pura ed Applicata, 2015, 194(4), 953968. 
*126  [YQL] Q. X. Yang, T. Qian, P. T. Li, Spaces of harmonic functions with boundary values in Q^a_{p,q}, Applicable Analysis, 2014, 93(11), 24982518. 
*125  [SQSW] D. Schepper, T. Qian, F. Sommen, J. X. Wang, Holomorphic Approximation of L_2functions on the Unit Sphere in R3, Journal of Mathematical Analysis and Applications, 2014, 416(2), 659671. 
*124  [Q23] T. Qian, Adaptive Fourier Decomposition, Rational Approximation, Part 1:Theory, International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(5), 1461008, 13 pp. 
*123  [ZMHQ] L. M. Zhang, W. X. Mai, W. Hong, T. Qian, Adaptive Fourier Decomposition, Rational Approximation, Part 2: Software System Design and Development, International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(5), 1461009, 10 pp. 
*122  [MoQ1] Y. Mo, T. Qian, Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem, Applied Mathematics and Computation, 2014, 245: 509519. 
*121  [XDChenQian2] X. D. Chen, T. Qian, A sharp lower bound of Burkholder’s functional for Kquasiconformal mappings and its applications, Monatshefte für Mathematik, 2014, 175(2): 195212. 
*120  [LLvQ] P. T. Li, J. H. Lv, T. Qian, A Class of Unbounded Fourier Multipliers on the Unit Complex Ball, Abstract and Applied Analysis, 2014, Art. ID 602121, 8 pp. 
*119  [MQ3] W. Mi, T. Qian, On backward shift algorithm for estimating poles of systems, Automatica, 2014, 50(6), 16031610. 
*118  [QWY] T. Qian, J. X. Wang, Y. Yang, Matching Pursuits among Shifted Cauchy Kernels in HigherDimensional Spaces, Acta Mathematica Scientia, 2014, 34(3): 660672. 
*117  [QChen] T. Qian, Q. H. Chen, Rational Orthogonal Systems are Schauder Bases, Complex Variables and Elliptic Equations, 2014, 59(6): 841846. 
*116  [XDChenQian] X. D. Chen, T. Qian, Nonstretch mappings for a sharp estimate of the BeurlingAhlfors operator, Journal of Mathematical Analysis and Applications, 2014, 412(2): 805–815. 
*115  [LptQt ] P. T. Li, T. Qian, Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces, Nonlinear Analysis Series A: Theory, Methods & Applications, 2014, 95: 436–449. 
*114  [WQ1] J. X. Wang, T. Qian, Approximation of monogenic functions by higher order Szeg\”o kernels on the unit ball and the upper half space, Sciences in China: Mathematics, 2014, 57(9), 17851797. 
*113  [DuQWIII] Z. H. Du, T. Qian, J. X. Wang, Lp polyharmonic Dirichlet problems in regular domains III: The Unit Ball, Complex Variables and Elliptic Equations, 2014, 59(7), 947965. 
*112  [Q22] T. Qian, Cyclic AFD Algorithm for Best Rational, Mathematical Methods in the Applied Sciences, 2014, 37(6), 846859. 
*111  [LCQW] Y. F. Li, Q. H. Chen, T. Qian, Y. Wang, Sampling error analysis and some properties of nonbandlimited signals that are reconstructed by generalized sinc functions, Applicable Analysis, 2014, 93(2), 305315. 
*110  [LQ2] S. Li, T. Qian, On Sparse Representation of Analytic Signal in Hardy Space, Mathematical Methods in the Applied Sciences, 2013, 36 (17): 22972310. 
*109  [DDQ2] P. Dang, G. T. Deng, T. Qian, A Tighter Uncertainty Principle For Linear Canonical Transform in Terms of Phase Derivative, IEEE Transactions on Signal Processing, 2013, 61(21): 5153 – 5164. 
*108  [QZ] T. Qian, L. M. Zhang, Mathematical theory of signal analysis vs. Complex analysis method of harmonic analysis, applied mathematicsA Journal of Chinese Universities, 2013, 28(4): 505530. 
*107  [DuQW] Z. H. Du, T. Qian, J. X. Wang, Lp polyharmonic Dirichlet problems in regular domains IV: The upperhalf space, Journal of Differential Equations， 2013, 255(5): 779–795. 
*106  [LdfQ] D. F. Li , T. Qian, Sufficient conditions that the shiftinvariant system is a frame for L2(Rn), Acta Math. Sinica, 2013, 29(8), 16291636. 
*105  [TQ2013] L. H. Tan, T. Qian, Estimations of convergence rate of rational Fourier series and conjugate rational Fourier series and their applications, 中国科学：数学，2013, 43(6): 541550. 
*104  [DDQ1] P. Dang, G. T. Deng, T. Qian, A Sharper Uncertainty principle, Journal of Functional Analysis, 2013, 265(10): 22392266. 
*103  [MMQRS] W. X. Mai, Y. Mo, T. Qian, M. D. Riva, S. Saitoh, A Matrix Inequality for the Inversions of the Restrictions of a Positive Definite Hermitian Matrix, Advances in Linear Algebra & Matrix Theory, 2013, 3(4), 5558. 
*102  [LQM1] S. Li, T. Qian, W. X. Mai, Sparse Reconstruction of Hardy Signal And Applications to TimeFrequency Distribution,International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3), 1350031, 14 pp. 
*101  [QYQX] T. Qian, Q. X. Yang, Microlocal structure and two kinds of wavelet characterizations about the generalized Hardy spaces, Taiwanese Journal of Mathematics, 2013, 17(3), 10391054. 
*100  [ChenQQLee] Q. H. Chen, T. Qian, Y. F. Li, ShannonType Sampling for NonBandlimited Signals in Higher Dimensions, Sciences in China, 2013, 56(9): 19151934. 
*99  [LyfQ] Y. F. Li, T. Qian, Analytic sampling approximation by projection operator with application in decomposition of instantaneous frequency, International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(5), 1350040, 19 pp. 
*98  [CCQ] M. Chen, X. T. Chen, T. Qian, Quasihyperbolic Distance in Punctured Planes, Complex Analysis and Operator Theory, 2013, 7(3): 655672. 
*97  [QWang] T. Qian, Y. B. Wang, Remarks on Adaptive Fourier Decomposition, International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(1): 114. 
*96  [DQ2] P. Dang, T. Qian, Transient TimeFrequency Distribution based on Monocomponent Decompositions, International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3), 1350022, 24 pp. 
*95  [QLS] T. Qian, H. Li, M. Stessin ,Comparison of Adaptive Monocomponent Decompositions, Nonlinear Analysis: Real World Applications, 2013, 14(2): 1055–1074. 
*94  [QWe] T. Qian, E. Wegert, Optimal Approximation by Blaschke Forms, Complex Variables and Elliptic Equations, 2013, 58(1): 123133. 
*93  [CZQ] L. p. Chen, T. Zhong, T. Qian, Higher Order Boundary Integral Formula and IntegroDifferential Equation on Stein Mainfolds, Complex Analysis and Operator Theory, 2012, 6(2): 447464. 
*92  [QWj] T. Qian, J. X. Wang, Some Remarks on the Boundary Behaviors of Functions in the Monogenic Hardy Spaces, Advances in Applied Clifford Algebras, 2012, 22(3): 819–826. 
*91  [MQ] W. Mi, T. Qian, Frequency Domain Identification: An Algorithm Based On Adaptive Rational Orthogonal System, Automatica, 2012, 48(6): 11541162. 
*90  [DQ1] P. Dang, T. Qian, HardySobolev Derivatives of phase and amplitude and their applications, Mathematical Methods in the Applied Sciences, 2012, 35(17): 20172030. 
*89  [QSW] T. Qian, W. Sproessig, J. X. Wang, Adaptive Fourier decomposition of functions in quaternionic Hardy spaces, Mathematical Methods in the Applied Sciences, 2012, 35(1): 43–64. 
*88  [YQS2] Y. Yang, T. Qian, F. Sommen, Phase Derivative of Monogenic Signals in Higher Dimensional Spaces, Complex Analysis and Operator Theory, 2012, 6(5), 9871010. 
*87  [DQW1] Z. H. Du, T Qian, J. X. Wang, Lp Polyharmonic Dirichlet problems in regular domains, II: The upper half plane, Journal of Differential Equations, 2012, 252(2): 17891812. 
*86  [DeQ] G.T. Deng, T. Qian, An Application of Entire Function Theory to Analytic Signals, Journal of Mathematical Analysis and Applications, 2012, 389(1): 54–57. 
*85  [MQW] W. Mi, T. Qian, F. Wan, A Fast Adaptive Model Reduction Method Based on TakenakaMalmquist Systems, Systems & Control Letters, 2012, 61(1): 223–230. 
*84.  [YQ7] Y. Yang, T. Qian, 实系数解析函数的零点集合，Acta Mathematica Sinica, 2011, 31A(5): 1160–1166. 
*83.  [QZL] T. Qian, L. M. Zhang, Z. X. Li, Algorithm of Adaptive Fourier Decomposition , IEEE Transactions on Signal Processing, 2011, 59(2): 5899 – 5906. 
*82.  [DQ2] P. Dang, T. Qian, Analytic Phase Derivatives, AllPass Filters and Signals of Minimum Phase, IEEE Transactions on Signal Processing, 2011, 59(10): 4708 – 4718. 
*81.  [LptLeongQ] P. T. Li , T. Qian, A class of Fourier multipliers on starlike Lipschitz surfaces, Journal of Functional Analysis, 2011, 261(6): 14151445. 
*80  [CQRW] Q. H. Chen, T. Qian, G. B. Ren, Y. Wang, BSplines of Blaschke Product Type, Computers and Mathematics with Applications, 2011, 62(10), 36693681. 
*79.  [YQ6] Y. Yang, T. Qian, Zeroes of Slice Monogenic Functions, Mathematical Methods in the Applied Sciences, 2011, 34(11): 1398–1405. 
*78.  [QTW] T. Qian, L. H. Tan, Y. B. Wang, Adaptive Decomposition by Weighted Inner Functions: A Generalization of Fourier Serie, Journal of Fourier Analysis and Applications, 2011, 17(2): 175190. 
*77.  [QWa1] T. Qian, Y. B. Wang, Adaptive Fourier series—a variation of greedy algorithm , Advances in Computational Mathematics, 2011, 34(3): 279–293. 
*76.  [DQY] P. Dang, T. Qian, Z. You, HardySobolev spaces decomposition and applications in signal analysis, Journal of Fourier Analysis and Applications, 2011, 17(1): 36–64. 
*75.  [YQ4] Y. Yang, T. Qian, on sets of zeros of cliffordalgebravalued polynomials, Acta Mathematica Scientia, 2010, 30(3): 10041012. 
*74.  [ZLQ] D. S. Zhou, D. Z. Liu, T. Qian, Fixed trace $\beta$Hermite ensembles: asymptotic eigenvalue density and the edge of the ensity, Journal of Mathematical Physics, 2010, 51(3), 033301, 19 pp. 
*73.  [Q21] T. Qian, Intrinsic monocomponent decomposition of functions: An advance of Fourier theory, Mathematical Methods in Applied Sciences, 2010, 33(7): 880891. 
*72.  [QWXZ] T. Qian, R. Wang, Y. S. Xu, H. Z. Zhang, Orthonormal Bases with Nonlinear Phases,Advances in Computational Mathematics, 2010, 33(1): 7595. 
*71.  [LLQ] H. Li, L.Q. Li, T. Qian, DiscreteTime Analytic Signals and Bedrosian Product Theorems, Digital signal processing, 2010, 20(4): 982–990. 
*70.  [QHLW] T. Qian, I. T. Ho, I. T. Leong, Y. B. Wang, Adaptive decomposition of functions into pieces of nonnegative instantaneous frequencies, International Journal of Wavelets, Multiresolution and Information Processing, 2010,8(5): 813–833. 
*69.  [QWD] T. Qian, Y. B. Wang, P. Dang, Adaptive Decomposition Into MonoComponents, Advances in Adaptive Data Analysis, 2009, 1(4): 703709. 
*68.  [CQ] Q. H. Chen, T. Qian, Sampling theorem and multiscale spectrum based on Fourier atom, Applicable Analysis, 2009, 88(6): 903919. 
*67.  [AKQ] A. Axelsson, K. I. Kou, T. Qian, Hilbert transforms and the Cauchy integral in Euclidean space, Studia Mathematica, 2009, 193(2): 161187. 
*66.  [GLQ] Y. F Gong, I. T Leong, T. Qian, Two Integral Operators In Clifford Analysis,Journal of Mathematical Analysis and Applications, 2009, 354(2): 435–444. 
*65.  [QY] T. Qian, Y. Yang, Hilbert Transforms on the Sphere With the Clifford Algebra Setting, Journal of Fourier Analysis and Applications, 2009, 15: 753774. 
*64.  [QXYYY] T. Qian, Y. S. Xu, D. Y. Yan, L. X. Yan, B. Yu, Fourier Spectrum Characterization of Hardy Spaces and Applications, Proceedings of the American Mathematical Society, 2009, 137(3): 971980. 
*63.  [Q20] T. Qian, Boundary Derivatives of the Phases of Inner and Outer Functions and Applications, Mathematical Methods in the Applied Sciences, 2009, 32: 253263. 
*62.  [FQ4] M. G. Fei, T. Qian, Pointwise convergence for expansions in spherical monogenics, Acta Mathematica Scientia, 2009, 29B(5): 12411250. 
*61.  [FQ3] M. G. Fei, T. Qian, A note on pointwise convergence for expansions in surface harmonics of higher dimensional Euclidean spaces, Taiwanese Journal of Mathematics, 2009, 13(3), 10531062. 
*60.  [LPQ1] X. M. Li, L. Z. Peng, T. Qian, The PaleyWiener Theorem in the noncommutative and nonassociative octonions, Science in China Series A: Mathematics, 2009, 52(1), 129141. 
*59.  [LPQ2] X. M. Li, L. Z. Peng, T. Qian, Cauchy integrals on Lipschitz surfaces in the octonionic space, Journal of Mathematical Analysis and Applications, 2008, 343(2): 763–777. 
*58.  [QZL] T. Qian, L. M. Zhang, H. Li, Monocomponents vs. IMFs in signal decomposition, International Journal of Wavelets, Multiresolution and Information Processing, 2008, 6(3): 353374. 
*57.  [DQ] R. Delanghe, T. Qian, Half Dirichlet problems and decomposition of Posson kernels, Advances in Applied Clifford Algebras, 2007, 17(3): 383393. 
*56.  [YQ3] Y. Yang, T. Qian, Codimensionp Shannon sampling theorems, Complex Variables and Elliptic Equations, 2007, 52(1): 920. 
*55.  [KQS2] K. I. Kou, T. Qian, F. Sommen, Sampling with Bessel functions, Advances in Applied Clifford Algebras, 2007, 17(3): 519536. 
*54.  [ZQZ] L. M. Zhang, T. Qian, Q. Y. Zeng, Radon measure formulation for edge detection using rotational wavelets, Communication on Pure and Applied Analysis, 2007, 6(3): 899915. 
*53.  [YQS] Y. Yang, T. Qian, F. Sommen, Codimensionp PaleyWiener Theorem, Arkiv för Matematik, 2007, 45: 179196. 
*52.  [FQ2] M. G. Fei, T. Qian, Clifford algebra approach to pointwise convergence of Fourier series on spheres, Sciences of China, 2006, 49(11): 15531575. 
*51.  [YQ2] Y. Yang, T. Qian, Schwarz Lemma in Euclidean spaces, Complex Variables and Elliptic Equations, 2006, 51(7): 653659. 
*50.  [PQS] D. P. Pea, T. Qian, F. Sommen, An alternative proof of Fueter’s theorem, Complex Variables and Elliptic Equations. An International Journal, 2006, 51(811): 913–922. 
*49.  [CLQ2] Q. H. Chen, L. Q. Li, T. Qian,Two Families of Analytic Signals with Nonlinear Phase, Physica D. Nonlinear Phenomena, 2006, 221(1): 112. 
*48.  [FQ1] M. G. Fei, T. Qian, Direct Sum Decomposition of L^2(R^n_1) into Subspaces Invariant Under Fourier Transformation, The Journal of Fourier Analysis and Applications, 2006, 12(2): 145155. 
*47.  [QC] T. Qian, Q. H. Chen, Characterization of Analytic Phase Signals, Computers & Mathematics with Applications. An International Journal, 2006, 51(910): 14711482. 
*46.  [YQ1] Y. Yang, T. Qian, An elementary proof of PaleyWiener Theorem in C^n using Clifford algebra, Complex Variables and Elliptic Equations, 2006, 51(5): 599609. 
*45.  [Q19] T. Qian, Monocomponents for decomposition of signals, Mathematical Methods in the Applied Sciences, 2006, 29(10): 11871198. 
*44.  [Q18] T. Qian, Analytic Signals and Harmonic Measures, Journal of Mathematical Analysis and Applications, 2006, 314(2): 526536. 
*43.  [CLQ1] Q. H. Chen, L. Q. Li and T. Qian, Stability of frames generalized by nonlinearatoms, International Journal of Wavelets, Multiresolutionand Information Processing, Vol. 3, No. 4 (December 2005) 465476. 
*42.  [Q17] T. Qian, Characterization of boundary values of functions in Hardy spaces with applications in signal analysis, Journal of Integral Equations and Applications, 2005, 17(2): 159198. 
*41.  [QCL] T. Qian, Q. H. Chen and L.Q. Li, Analytic unit quadrature signals with nonlinear phase, Physica D: Nonlinear Phenomena, 2005, 303 (12), 8087. 
*40.  KQ3] K.I. Kou and T. Qian, Shannon Sampling in the Clifford Analysis Setting,Z. Anal. Anwendungen, 2005, 24(4): 853870. 
*39.  [KQ2] K.I. Kou and T. Qian, Shannon sampling and estimation of bandlimited functions in the several complex variables setting, Acta Mathematica Scientia, 25(4), 2005, 741754. 
38.  [GQD] Y. F. Gong, T. Qian, J. Y. Du, The structure of solutions of polynomial Dirac equations in Clifford analysis, Complex Variables, 2004, 49(1): 1524. 
*37.  [QS] T. Qian, F. Sommen, Deriving harmonic functions in higher dimensional spaces,Mathematical Methods in the Applied Sciences, 2003, 22(2): 275288. 
*36.  [KQS1] K. I. Kou, T. Qian, F. Sommen, Generalizations of Fueter’s Theorem, Methods and Applications of Analysis, 2002, 9(2): 273289. 
*35.  [KQ1] K. I. Kou, T. Qian, The PaleyWiener theorem in Rn with the Clifford analysis setting, Journal of Functional Analysis, 2002, 189: 227241. 
*34.  [Q16] T. Qian, Calderontype reproducing formulae on Lipschitz curves and surfaces, Journal of the Australian Mathematical Society, 2002, 72: 3345. 
*33.  [QZ3] T. Qian, T. D. Zhong, Hadamard principal value of higher order singular integrals, Chinese Annals of Mathematics Series A, 2002, 23(2), 205212. 
*32.  [Q15] T. Qian, Fourier analysis on starlike Lipschitz surfaces, Journal of Functional Analysis, 2001, 183: 370412. 
*31.  [QY] T. Qian, Q. H. Yu,The schwarzian derivative in Rn, Advances in Applied Clifford Algebras, 2001, 11(S2): 257–268. 
*30.  [QZ2] T. Qian, T. D. Zhong, The differential integral equations on smooth closedorientable manifolds, Acta Mathematica Sinica(Series B), 2001, 21(1): 18. 
*29.  [QZ] T. Qian, T. D. Zhong, Transformation formula of higher order singularintegrals on the complex hypersphere, Journal of the Australian Mathematical Society (Series A), 2000, 68: 155164. 
*28.  [JQ] X. H. Ji, T. Qian, Properties of Poisson kernel for a degenerate elliptic equation, Zeitschrift für Analysis and ihre Anwendungen (Mathematical Methods in the Applied Sciences), 2000, 23: 7180. 
27.  [CQ] M. Cowling, T. Qian, A class of singular integralson the ncomplex unit sphere, Scientia Sinica (Series A), 1999, 42(2): 12331245. 
26.  [LQ] R. L. Long, T. Qian, Clifford martingale Phiequivalence between S(f) and f*, Advances in Applied Clifford Algebras, 1998, 8(1): 95107. 
*25.  [Q14] T. Qian, Singular integrals on starshaped Lipschitz surfaces in the quaternionicspace, Mathematische Annalen, 1998, 310 (4): 601630. 
24.  [Q13] T. Qian, Generalization of Fueter’s result to R^{n+1}, Rend. Mat. Acc. Lincei, 1997, 8(9): 111117. 
23.  [Q12] T. Qian, A holomorphic extension result, Complex Variables, 1997, 32(1): 5977. 
*22.  [Q11] T. Qian, Singular integrals with holomorphic kernels and Fourier multipliers on starshape Lipschitz curves, Studia Mathematica, 1997, 123(3): 195216. 
21.  [GQW] G. Gaudry, T. Qian, S. L. Wang, Boundedness of singular integrals with holomorphic kernels on starshaped closed Lipschitz curves, Colloquium Mathematicum, 1996, LXX: 133150. 
*20.  [QR] T. Qian, J. Ryan,Conformal transformations and Hardy spaces arising in Clifford analysis, Journal of Operator Theory, 1996, 35: 349372. 
*19.  [GQ] G. I. Gaudry, T. Qian, Homogeneous even kernels on surfaces, Mathematische Zeitschrift, 1994, 216: 169177. 
*18.  [LMQ] C. Li, A. McIntosh, T. Qian, Clifford algebras, Fourier transforms, and singular Convolution operators on Lipschitz surfaces, Revista Matematica Iberoamericana,1994, 10(3): 665695. 
*17.  [QP] J. Peetre, T. Qian, Möbius covariance of iterated Dirac operators, Journal of the Australian Mathematical Society (Series A), 1994, 56 (3): 112. 
*16.  [GLQ] G. I. Gaudry, R. Long, T. Qian, A Martingale proof of L2boundednessof CliffordValued Singular Integrals, Annali di Mathematica Pura Ed Applicata, 1993, 165: 369394. 
*15.  [GQS] G. Gaudry, T. Qian, P. Sjögren, Singular Integrals related to the Laplacian on the affine group ax+ b, Arkiv for matematik, 1992, 30(2): 259281. 
*14.  [McQ2] A. McIntosh, T. Qian,Lp Fourier multipliers along Lipschitz curves, Transactions of The American Mathematical Society, 1992, 333(1): 157176. 
13.  [McQ1] A. McIntosh, T. Qian, A note on singular integralsalong Lipschitz curves with holomorphic kernels , Approximation Theory and its Applications, 1990, 6(4): 4057. 
*12.  [PQ] L. Z. Peng, T. Qian, A kind of multlinear operators and the Schattenvon Neumann classes, Arkiv for Mat., 1989, 27: 145–154. 
11.  [Q10] T. Qian, BMO boundedness of a certain class of operators, Research and Reviews in Math., 1987, 7(2): 331–332. 
*10.  [Q9] T. Qian, BMO boundedness of maximal operators, Acta Math. Sinica, 1986, 29(3): 317322. 
*9.  [QL] T. Qian, C. Li, Pointwise estimates for a class of singular integrals and higher commutators, Acta Math. Sinica, new series, 1986, 2(3): 248259. 
8.  [Q8] T. Qian, Weighted inequalities concerning the Radon measures of the arclength of curves on the complex plane, Journal of SystemsScience and Mathematical Science, 1986, 6(2): 146153. 
*7.  [Q7] T. Qian, Commutators of multiplier operators, Chin. Ann. of Math, 1985, 6B (4): 401408. 
6.  [Q6] T. Qian, Kakeya needle problem, Maths in Practice and Theory, 1985, 3: 6467. 
*5.  [Q5] T. Qian, Higher Commutators of pseudodifferential operators, Chin. Ann. of Math, 6B(2): 229240. 
4.  [Q4] T. Qian,.Commutators of homogeneous multiplier operators, ScientiaSinica, 1985, XXVIII(3): 225234. 
3.  [Q3] T. Qian, On estimate for a multilinear singular integral, Scientia Sinica, 1984, XXVIII(11): 11431154 . 
2.  [Q2] T. Qian, The preservation of the Lipschitz spaces under several maximal operators, Kexue Tongbao, 1984, 29(4): 443447. 
1.  [Q1] T. Qian, Lip boundedness of some maximal operators defined on ${\scr H}$families of sets, Kexue Tongbao (Chinese), 1983,28(21): 1285–1288. 
10.  Qian, Tao; Li, Pengtao. Singular integrals and Fourier theory on Lipschitz boundaries. Science Press Beijing, Beijing; Springer, Singapore, 2019. xv+306 pp. ISBN: 9789811364990; 9789811365003 4202 (42B20 42B25 46E35) 
9.  New Trends in Analysis and Interdisciplinary Applications, by P. Dang, M. Ku, T. Qian and L. G. Rodino, Trends in Mathematics Research Perspectives. 
8.  Lipschitz 边界上的奇异积分与 Fourier 理论, by T. Qian and P. T. Li, 科学出版社. 
7.  Mathematical Analysis, Probability and Applications– Plenary Lectures, by Qian, T. and Rodino, L., Springer Proceedings in Mathematics & Statistics. 
6.  自适应 Fourier 变换, by Qian, T., 科学出版社. 
5.  Complex Variables and Elliptic Equations, by T. Qian and Z.H. Du, accepted to appear in 2012. 
4.  Mathematical Methods in the Applied Sciences, by T. Qian, I.T. Leong, 30 November 2012 Volume 35, Issue 17, Page 19992140, Special Issue: Complex Analytic Methods in Signal Processing 
3.  Communication on Pure and Applied Analysis , by T. Qian and Y. S. Xu (Editors),invited as guest editor for the special issue 6 (3), 2007. 
2.  Wavelet Analysis and Applications,by T. Qian, V. M. I and Y. S. Xu (Editors), the book series in Applied and Numerical Harmonic Analysis, Springer, 2007. 
1.  Advances in Analysis and Geometry, by T. Qian, T. Hempfling, A. McIntosh and F. Sommen (Editors) ,book series in Trends in Mathematics, Birkhäuser, 2004. 
12.  [Q24] T. Qian, Fueter mapping theorem in hypercomplex analysis, Springer References: General Aspects of Quaternionic and Clifford Analysis, Operator Theory, edited by Daniel Alpay. 
11.  Sparse Representation of Signals in Hardy Space, Quaternionic and Clifford Fourier Transforms and Wavelets, by Eckhard Hitzer and Stephen J. Sangwine, Trends in Mathematics, Birkh\”aser, 2013. 
10.  [bookchapter10] HOW TO CATCH SMOOTHING PROPERTIES AND ANALYTICITY OF FUNCTIONS BY COMPUTERS, L.P. Castro, H. Fujiwara, T. Qian and Saburou Saitoh, MATHEMATICS WITHOUT BOUNDARIES: SURVEYS IN INTERDISCIPLINARY RESEARCH, Edited by Panos Pardalos and Themistocles M. Rassias, The volume will be published by Springer in 2014. 
9.  Hilbert Transforms on the Sphere and Lipschitz Surfaces, by T. Qian, Quaternionic and Clifford Analysis, Trends in Mathematics, Birkhäuser Verlag Basel/Switzerland, 259275, 2008. 
8.  Monocomponents for signal decomposition, book series in Applied and Numerical Harmonic Analysis, Springer, 2007. 
7.  Timefrequency aspects of nonlinear Fourier atoms, by T. Qian, Q. H. Chen and L. Q. Li, the book series in Applied and Numerical Harmonic Analysis, Springer, 2007. 
6.  Advances in Analysis and Geometry, by T. Qian, T. Hempfling, A. McIntosh and F. Sommen (Editors), bookseries in Trends in Mathematics, Birkhäuser, 2004. 
5.  Dinitype convergence of Fourier series on the unit sphere of Euclidean spaces, by T. Qian and S. Liu, book series in Trends in Mathematics, Birkhäuser, 2004, pp131148. 
4.  Singular Integrals and Fourier Multipliers On the Unit Spheres and Their Lipschitz Perturbations, Advances in Applied Clifford Algebras, Vol 11, (S1) 5376, November (2001)– Special Issue, Clifford Analysis Proceedings of the Clifford Analysis Conference, Cetraro, Italy, October, 1998, John Ryan and Daniele C. Struppa Editors. 
3.  Fourier theory under Möbius transformations, by T. Qian, X. H. Ji, and J. Ryan, CliffordAlgebras and Their Applications in Mathematical Physics, Volume2, edited by John Ryan and Wolfgang Sprössig, Birkhäuser,BostonBaselBerlin (April 2000), 5180. 
2.  Singular integrals on the mtorus and its Lipschitz perturbations, Clifford Algebras in Analysis and Related Topics, book chapter in the series: Studies in Advanced Mathematics, CRC Press (1995), 94108. 
1.  Convolution singular integrals on Lipschitz curves,byT. Qian and A.McIntosh, SpringerVerlag, Lecture Notes in Maths 1494 (1991) 142–162. 
16.  Sparse Reconstruction of Signals in hardy Spaces, S. Li and T. Qian, the proceedings of QCFTW (of ICCA9) for TIM/Birkhauser, edited by Eckhard MS Hitzer and Steve Sangwine. 
15.  An adaptive method of model reduction in frequency domain, by Mi Wen and T Qian,IEEE Power Engineering and Automation Conference (PEAM 2011), Sep, Wuhan. 
14.  Adaptive Fourier Transform Based Signal Denoising, by Zhang, L. M. & Li, H. and Qian, T. (2011). ICSP 2011: International Conference on Signal Processing. 
13.  Instantaneous Frequencies of Simple Waves and Their application to Sleep Spindle Detection, by Zhang, L.M., Li, H., Wei,Y.T. & Qian, T., Proceedings of 2011 IEEE International Conference on Systems, Man, and Cybernetics (2011). 
12.  Nonharmonic system with greedy algorithm, by S. Li and T. Qian, accepted to appear in the International Workshop on Electromagnetism and Communication Engineering”. (ECE 2011), IEEE Catalog Number: CF1143kDVD, ISBN: 9781424494385, Conference Code: #18262 
11.  Frequency Domain Identification with Adaptive Rational Orthogonal System, with M. Wen, Proceedings of 2010 International Conference on System Science and Engineering, Taiwan. 
10.  A new property of Nevanlinna Functions, by T. Qian, Proceedings of the 16th International Conference of Finite and Infinite Dimensional Complex Analysis and Applications, Dongguk University, Gyeongju, KOREA, July 28August 1, 2008, pp 3849. 
9.  A mathematical model for edge detection using rotational wavelet transformation, by T. Qian andL. M. Zhang, the 6th IASTED International Conference onComputers, Graphics, and Imaging,} August 1315, 2003, Honolulu,USA. 
8.  Parameter Analysis of Morlet Wavelet Transform Based Edge Detection, by T. Qian and L. M. Zhang, Proceedings of the 7th WSEASInt. Conf. on CSCC (Circuits, Systems, Communications andComputers)} in Corfu Island, Greece, July 710, 2003. 
7.  Derivation of monogenic functions and applications, Proceedings of the Centre for Mathematics and its applications, Australian University, Volume 41, 2003,118127. 
6.  Radon measure formulation of edge detection using rotational wavelets, by T. Qian andL. M. Zhang, Proceedings of the WSEAS conference,Singapore, December, 2002. 
5.  PaleyWiener theorem and Shannon Sampling in the Clifford analysis setting, Proceedings of the 6th International Conference on Clifford Algebras and their Applications, Invited Volume for Plenary Talks,May 2025, 2002, Cookeville, Tennessee, USA. 
4.  Singular integrals on starshaped Lipschitz surfaces in the quaternionic space and generalisations to Rn, Proceedings of the Symposium on Analytical and Numerical Methods in Quaternionic and Clifford Analysis, Seiffen, 1996,187196. 
3.  Transference between infinite Lipschitz graphs and periodic Lipschitz graphs, Proceedings of the Center for Mathematics and its Applications, ANU, vol.33 (1994), 189194. 
2.  A note on martingales with respect to complex measures, by T. Qian, M. Cowling and G. Gaudry, Miniconference onOperators in Analysis (1989), Proceedings of the Center forMathematical Analysis, 24, ANU, Canberra, (1989), 10–27. 
1.  Fourier transform on Lipschitz curves, by T. Qian and A. McIntosh, Proceedings of the Center for Mathematical Analysis, ANU, vol. 15, (1987), 157–166. 
Faculty of Science and Technology
University of Macau, E11
Avenida da Universidade, Taipa,
Macau, China
Room: E113084, 3085
Telephone: (853) 88228547
Fax: (853) 88222426
Email: fsttq, tqian1958@gmail.com